Ultrahigh-Strain-Rate Dynamic Effects of Molecular-Weight Distribution of Polystyrene upon Plasticity and Fracture Properties in Cold Spray Deposition

Anuraag Gangineri¹, Tristan W. Bacha², Jeeva Muthulingam³, Francis M. Haas², Joseph F. Stanzione, III², Behrad Koohbor³, and Jae-Hwang Lee¹

¹ Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts, 01002, USA.

²Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA.

³Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.

ABSTRACT

Cold spray (CS) achieves deposition of sprayed solid micro-particles due to interfacial heating induced by extreme plastic deformations that occur at micro-particles and stationary substrate interface during high-speed collision events. Laser-induced projectile impact test (LIPIT) uses ultrafast stroboscopic imaging (pulse-duration<1 ps) to capture the motion of individual micro-particles impacting a target at ultrahigh strain rates (UHR>10⁶ s⁻¹). We use LIPIT to conduct single particle impact experiments, essential in understanding the extreme collisions in CS processing.

Monodisperse polystyrene microparticles (PS- μ Ps) (diameter~40 μ m) with varying molecular weights (MW), 10 kDa, 20 kDa, 40 kDa, and 100 kDa, were impacted on PS and silicon substrates. Plastic shear flow within a colliding PS- μ P becomes the dominant deformation channel over brittle fragmentation when adiabatic heating and thermal softening are promoted by increasing target substrate rigidity. Higher MW (>20 kDa) is essential in suppressing early onset of brittle fracture while promoting adiabatic heating. However, an excessively high MW~100 kDa reduces the PS- μ Ps adhesion to substrate due to insufficient surface wetting driven by particle elasticity. Furthermore, LIPIT experiments were conducted with four MW-blended PS- μ Ps produced with weight ratios, 20:80, 40:60, 60:40, and 80:20 of 10 kDa PS and 100 kDa PS to understand the rheological effects and competition between plastic shear and fracture. The 60:40 blend shows lowest critical velocity of 400 m/s, while best bonding between PS- μ P and silicon substrate is observed from 80:20 blend. Due to competing requirements for adiabatic shear flow and interfacial wetting, proper MW distribution becomes critical for CS of glassy polymers.

*This research was sponsored by the US DEVCOM Army Research Laboratory under Cooperative Agreement No. W911NF-19-2-0152.