

Characterization of Fundamental Building Blocks for Cold Spray Additive Manufacturing

Nathaniel Hanson¹, Scott Julien², Ozan Ozdemir², Taskin Padir¹ and Sinan Müftü² ¹Department of Electrical and Computer Engineering ²Department of Mechanical & Industrial Engineering Northeastern University, Boston, MA

P1-V

5

5

5

5

5

P1-θ

90

90

90

90

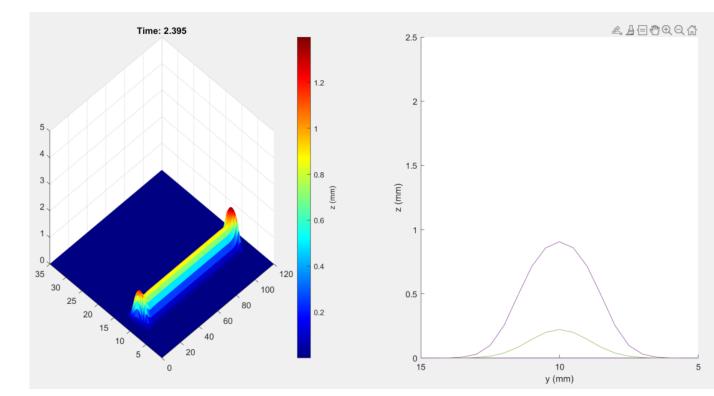
90

- Funding for this work from the US Army Research Lab under Grant Numbers W911NF-20-2-0024 and W911NF-17-S-0003 is gratefully acknowledged.
- Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the U.S. Government

Value

2.89

2.6


Trials

Goal

- Create high volume additive cold-spray forms with robotic planning and control
- Derive triangular tessellation model [1] for formation of fundamental building blocks (FBB)

Formulation

MATLAB Cold Spray Deposition Modeling

Considers spray angle, mass flux, and nozzle traverse speed to

□ Most promising candidate trials from simulation

- Shape building procedures consist of raster paths with nozzle traversing x axis at $\theta \in \{90, 60, 50, 40\}^\circ$
- Traverse speed (P#-V) is mm/s, P#- θ is in degrees

P2-V

5

5

5

5

5

- Attempt to build right-angle triangular form using minimal passes
- ➢ Nozzle controlled via 7 DoF

P2-

DoF Fanuc® M-710iC industrial robot					Spraying System	VRC® Gen III	
Ρ2-θ	P3-V	Р3-0	P4-V	Р4-ө	Nozzle	VRC® Nozzle 0058	
60	5	60	-	-	Powder Material	Cu-159-3	_
90	5	60	-	-	Gas	Nitrogen	
90	5	60	5	60	Pressure	870 psi	
60	5	60	10	60	Substrate	Aluminum	
	5		10		Powder Feed Rate	33.56 g/min	
60	5	60	15	60	Standoff	25 mm	

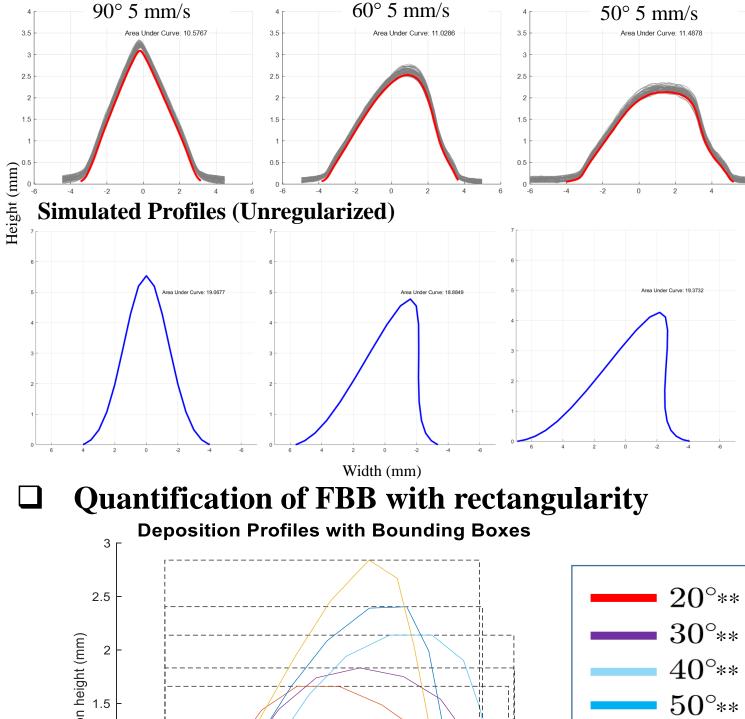
Parameter

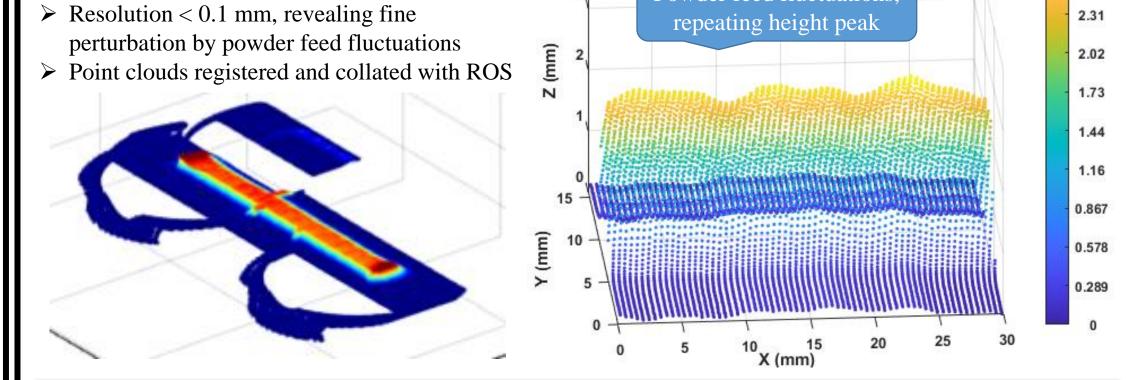
Results

Measurement of depositions with in-situ profilometry system

Laser profilometer rotates to follow the spray nozzle ensuring new depositions are always acquired by the scanner

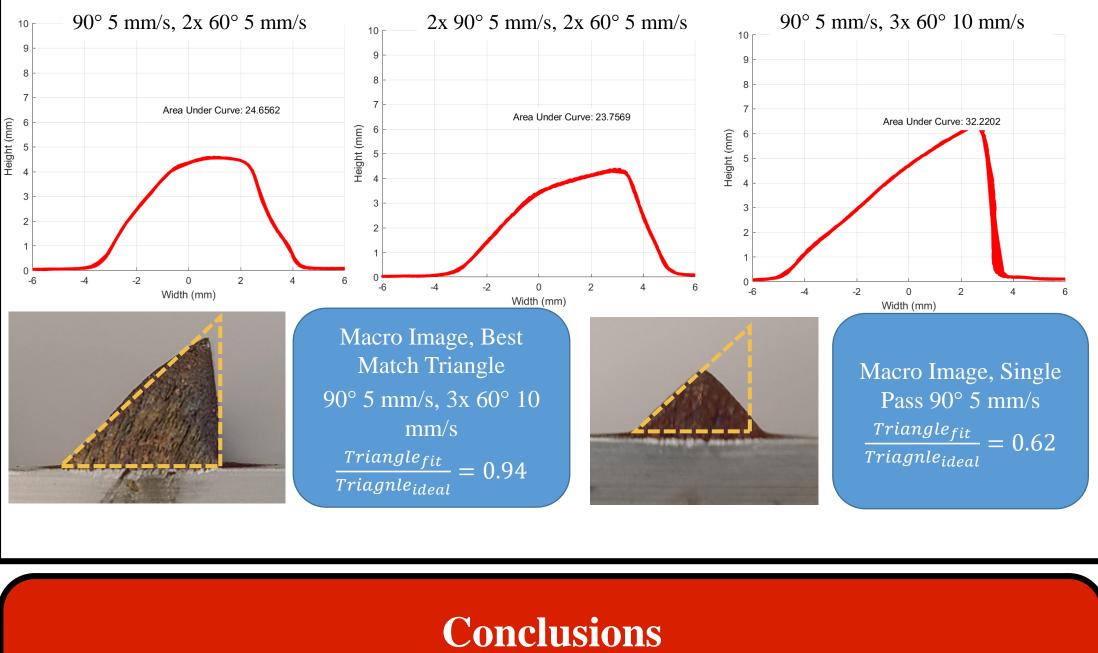
Powder feed fluctuations,

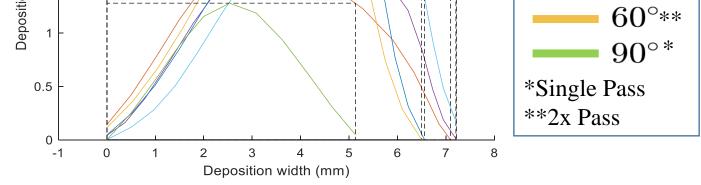

90° 10 mm/s Deposition


- generate 3D deposition profiles and cross sections for raster paths
- > Models discrete depositions as bivariate Gaussian Distribution
- > Allows for the variation of standoff distance, time steps, spray angles, and nozzle speed in creation of simulated profiles
- ➤ Assumes continuous material flow and unchanging mass flux per limitations of the spray system architecture
- > Deposition efficiency functions are taken from [2] and incorporate nozzle standoff, traverse speed, and normal angle to substrate

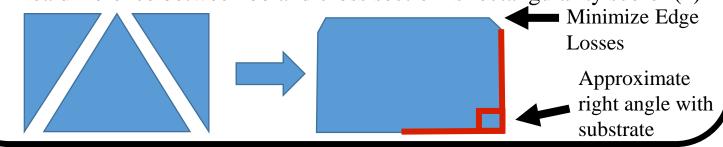
$$\phi = \eta \zeta(\theta) \zeta(s) \int_0^T \left(\int \frac{A\zeta(v)}{\sigma\sqrt{2\pi}} e^{-\left(\frac{(x-\mu_x)^2}{2\sigma^2} + \frac{(y-\mu_y)^2}{2\sigma^2}\right)} dx dy \right) dt \right)$$

- ➤ Model was scaled using constant coefficient to properly match deposition height values from previously run experiments (η)
- Simulations were conducted to explore effects of changing angle with respect to most promising rectangular shape formation





Profilometry enables real-time analysis of cross sections and assembly of point cloud slices into 3D model


Mean Cross Section Profiles from Depositions

Cold Spray can be used to create simple, prismatic shapes as precursor finite elements to larger 3D models \succ

> Define fundamental building block as a rectangular prism with minimal edge losses and vertical sides perpendicular to the base > Select minimal bounding box (bb), encapsulating deposition such that: $\triangleright \varphi \ge 0.1$ mm (minimally measurable deposition height) > Area difference between bb and cross section is rectangularity score $r(\theta)$

- > Varying the spray angle normal to previously deposited surfaces and nozzle traverse speed is sufficient to build shapes with sharp angles
- > Future Work: Converting 3D CAD model slicing software to decompose layer slices into raster plans incorporating FBB approach

Three raster passes is sufficient to create regular triangular forms; rectangles are a simple extension

- 1. J. Pattison, S. Celotto, R. Morgan, M. Bray, and W. O'Neill., "Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication," International Journal of Machine Tools and Manufacture, vol. 47, no. 3–4, pp. 627–634, Mar. 2007, doi: 10.1016/j.ijmachtools.2006.05.001.
- Hongjian Wu. Process Modeling and Planning for Robotic Cold Spray Based Additive Manufacturing. Material chemistry. Université 2. Bourgogne Franche-Comté, 2020. English. ffNNT : 2020UBFCA026ff. fftel-03162841f