

Directional Dependency of Bulk Fracture Toughness in Cold-Sprayed Al 6061 Deposits

Scott Julien and Sinan Müftü

Department of Mechanical & Industrial Engineering Northeastern University, Boston, MA, USA

- Funding for this work was provided by Raytheon Technologies and by the US Army Research Lab under contract no. W911NF-20-2-0024.
- Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Government

Goal

Investigate the directional dependency of fracture toughness in cold spray deposits.

Method

Fracture Toughness

Results

Fatigue Pre-Cracking:

Spray Parameters

Spraying System	VRC® Gen III Max
Powder	Valimet® Al 6061, Mil-DTL-32495C,
	Amend. 2, 230-mesh
Substrate	Al 6061-T651, 6.35-mm (1/4-in.) Plate
Powder Feed Rate	6.1 g/min
Gas Type	Helium
Gas Pressure	3.5 MPa
Gas Temperature	400°C
Particle Velocity	$1110 \pm 160 \text{ m/s}$
Nozzle Material	polybenzimidazole (PBI)
Nozzle Model	VRC® Nozzle 0071
Nozzle Throat Length	2.7 mm
Nozzle Length	170 mm
Nozzle Throat Diameter	1.75 mm
Nozzle Exit Diameter	4.85 mm
Nozzle Standoff Distance	25.4 mm
Rastering Speed	254 mm/s
Rastering Step Size	1 mm

Specimen Fabrication

Specimen	No. of Specimens	Specimen Size
Orientation	Tested	
X-Y	3	25-mm
Y-X	5	25-mm
T-S	2	20-mm
L-S	2	20-mm
L-T	2	25-mm
T-L	4	25-mm
S-T	2	20-mm
S-L	1	20-mm

Conclusions Fracture toughness is slightly higher in cold sprayed specimens when crack propagation is through the thickness.

- > Cold spray specimens fail in a combination of trans-particular (cohesive ductile) and interparticular (adhesive) modes, with the relative amounts depending upon crack orientation. Higher fracture toughness is correlated with a greater amount of trans-particular failure.
- **Overall, cold spray toughness is approximately 40 50% that of wrought.**

Acknowledgements

In addition to the funding sources listed at the top of this poster, grateful acknowledgement is extended to the following individuals for their contributions: Dr. Ozan C. Ozdemir, Patricia Schwartz, Jonathan Doughty, Benjamin MacAlister, Dr. Wentao Liang, Prof. Teiichi Ando, Dr. Ahmad Nourian Avval, and Joel Sanchez.