

Applied Research Laboratory The Pennsylvania State University

Navy ManTech Cold Spray Programs The Institute for Manufacturing and Sustainment Technologies

A Navy Manufacturing Technology Center of Excellence

Timothy Eden, Ph.D. 814-865-5880 tje1@arl.psu.edu

Institute for Manufacturing and Sustainment Technologies

Background / Core Competencies

- U.S. Navy established the Applied Research Laboratory at Penn State in 1945
- In 1996, DoD reaffirmed its strategic relationship and commitment by designating ARL as a University Affiliated Research Center (UARC)
- Trusted agent for the DoD
- Train next generation of Engineers
 - ARL is primarily a science and technology based laboratory with leadership in the following core competencies:
 - Materials and Manufacturing
 - Acoustics
 - Guidance and control
 - Thermal energy systems
 - Hydrodynamics, hydroacoustics, and propulsor design
 - Navigation and GPS
 - Communications and information
 - Graduate education

- The Navy ManTech Program develops and implements enabling manufacturing technology in the form of new equipment and processes
 - Supplements industry's ability to support DoD acquisition, weight reduction or Life Cycle Cost reduction efforts
 - Funded by ONR and associated stakeholders (program offices, directly related OEM's)
 - Leverage funding to support larger programs
 - Funding may include subcontracts to industry, government or other ManTech COE's
 - Requirements
 - Approval from Stakeholder
 - Clear Transition Path
 - One to three years duration

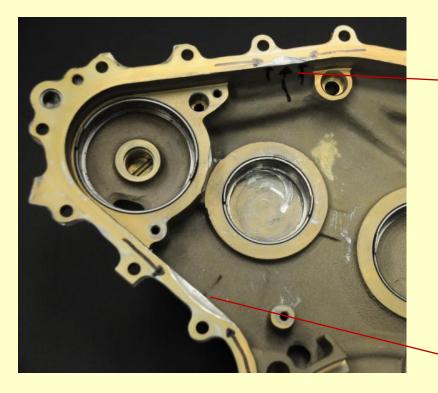
iMAST Overview

- iMAST established February 1995
- Address advanced weapon system issues
- Development & transition of new manufacturing processes & equipment supporting Navy acquisition and sustainment programs
- Projects contribute to affordability, life cycle cost reduction and sustainment
- Repair Technology (REPTECH) Projects: Repair, overhaul and sustainment
- Target fielded weapon systems and provide the process and equipment technology needed to repair and maintain fleet assets
- Implementation at naval depots, shipyards, Marine Corps logistics bases, intermediate maintenance activities and contractor facilities

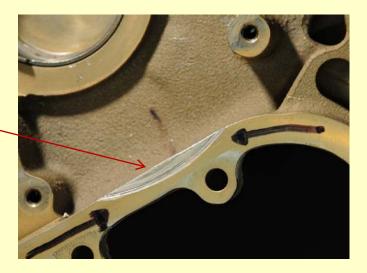
- Presentation Outline
- Portable Cold Spray Repair and Restoration
- Corrosion Resistant Coatings for Magnesium Transmission Gearboxes for SH60
- AAV Enhanced Appliqué Armor Kit Product Improvement

Objective:

Penn State

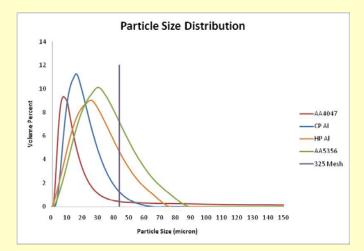

- •Develop portable processes for repair and restoration of Aluminum and Magnesium Components
- Approach:
 - Survey available portable Cold Spray Systems
 - Perform test to evaluate Cold Spray Systems
 - Select Cold Spray System Compliment NAVAIR
 - Cherry Point CGT Portable
 - NAVAIR components
 - AMAD Transmission Housing Cover
 - IVD Aluminum Repair
 - AH-1 and UH-1N Support Case Mount Foot
 - H-60 Tail Cone Bulkhead
 - Develop process to repair components
 - Perform qualification testing
 - Develop implementation requirements (safety, personal protection, etc.)
 - Transition technology

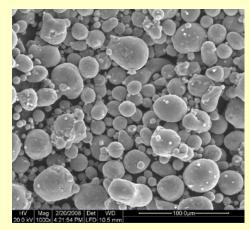
- Develop Cold Spray Repair Transmission Housing
 - Dimensional restoration
 - High adhesion strength
 - Hardness comparable to A357
 - Good Machinability
 - Rapid Response
- Approach
 - Process Development
 - Repair Validation
 - Repair Housing
- Compare Results to HP Systems


A357.0-T61 Hardness of 113 VHN (41 Rockwell A) Ultimate Tensile= >45ksi Tensile = >36ksi Composition AI-7%Si Ti = 0.04-0.20%

ARL

Penn State

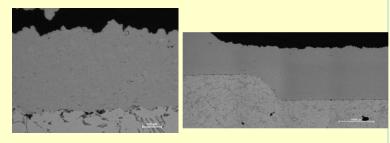



Damaged areas

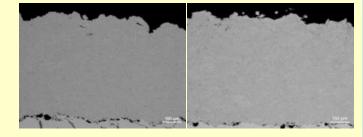
Portable Cold Spray Repair

Initial Set-up

- Type of repair
 - Dimensional
 - Structural
- Powder Selection
 - Material Compatibility
 - Hardness
 - CTE Match
 - Size and morphology
- Surface Preparation
 - Material removal
 - Bead blasting
 - Surface roughness
- Cold Spray System
- Process parameters
 - Modeling initial parameters
 - Process Gas Type, Pressure, Temperature
 - Nozzle
 - Traverse rate
- Powder testing
 - Size Distribution
 - Morphology



SEM of Al-12Si


- Powders
 - CP-AI, AA6061 and AA4047
- Systems
 - High Pressure
 - CGT 4000/47 with He, N2
 - Ktech He, N2
 - Low Pressure
 - Centerline SST with He, N2 and Compressed Air
- Surface Prep Glass Bead (G3) Media Blasting
- Microstructure Results AA4047
 - Porosity <0.1%

Galvanic Corrosion AA4047

SST (He) - 100x CGT (N2) - 100x

CGT (He) - 100x CGT (N2) - 100x

Al 12-Si – A357

Initial System Comparison Results						
System	Main Process Gas	Hardness (VHN)	Bond Strength (ksi)			
CGT-HP	N2	106	12.1*			
CGT-HP	Не	117-137	8.5-11.2*			
CGT- Portable	HE					
SST - Portable	HE	141	6			
* glue failures						

Initial System Repair Results

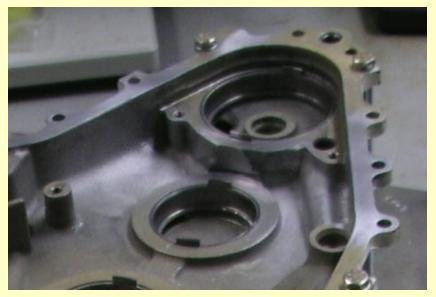
A357 Casting – Al-12 Si repair with Centreline Portable System

Initial System Repair Results

A357 Casting – AI-12 Si repair with Centreline Portable System

Initial System Repair Results

A357 Casting – Al-12 Si repair with Centreline Portable System


Cold Spray Repair HP System

Repair

- Surface Preparation
- Masking
- Coating Application
- Final Machining
- Dimensional Measurements
- Visual Inspection
- Acceptance Testing
 - Requirements/Specification
 - •NDE
 - Thermal Cycling
- Technology Transfer
- Documentation

Damaged Housing

Repaired Housing

Cold Spray Transition

Transition Locations

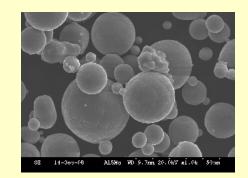
- US Naval Aviation Depot, Cherry Point, NC (FRC-E)
- North Island, CA (FRC-SW)
- Jacksonville, FL (FRC-SE)
- Program will be completed in 18 months

Project Objective

- Apply a corrosion resistant barrier coating of AI to Mg using Cold Spray
- Leverage Project with ESTCP Supersonic Particle Deposition Technology for Repair of Magnesium Aircraft Components
- Powder Development and Evaluation
- Corrosion Testing
- Supporting Transition

SH-60 Gearbox Repair

Magnesium highly susceptible to galvanic corrosion

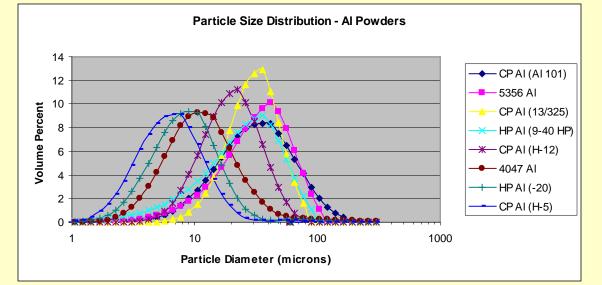

- Most electrochemically negative structural metal
- Thermodynamic driving force to corrode when coupled to any metal

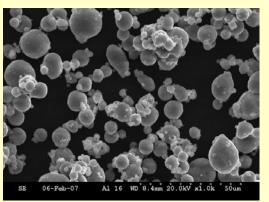
Galvanic corrosion possible on Al-coated gearbox

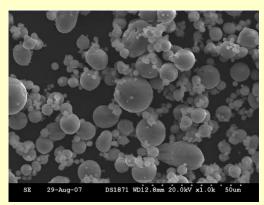
- Edge of coating (AI-Mg interface)
- Scratched/damaged coating (Mg exposed)

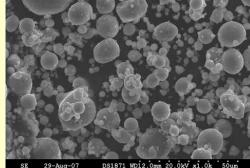
Powder Development and Evaluation

- Commercially Pure AI (CP) (99.5% AI)
- High Purity (HP) AI (99.95% AI)

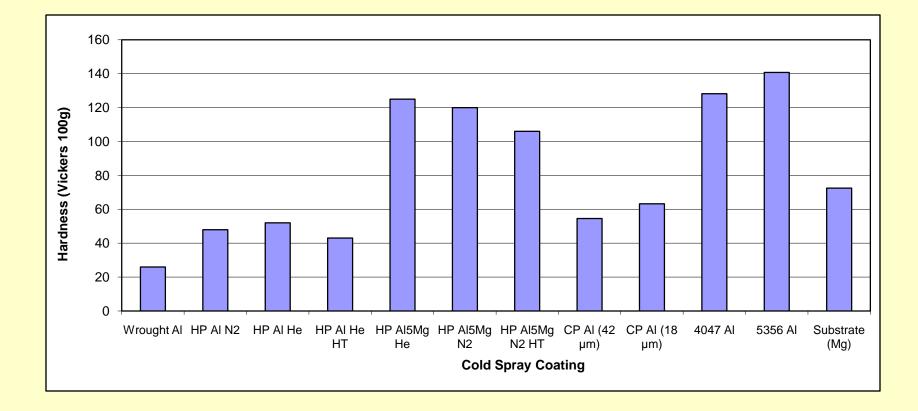



- High Purity (HP) AI-5 wt.% Mg (95% AI) Produced at PSU
- AI 5356 (5 wt.% Mg)
- Al 4047 (12 wt.% Si)
- AI 6061


SH-60 Gearbox Repair


Particle Characterization

CP Al - 18 µm


06-Feb-07 Al 31 WD 7.5mm 20.0kV x1.0k 50u

4047 Al - 13 µm

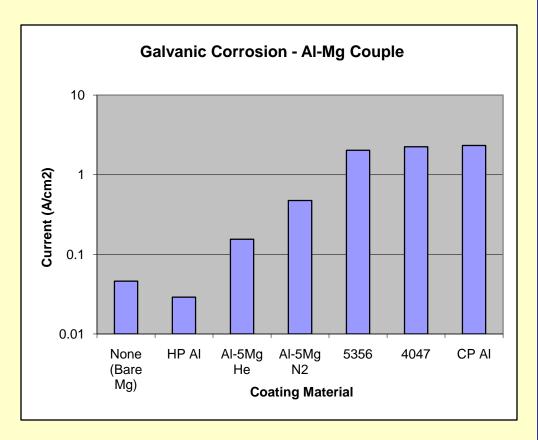
HP AI - 23 µm

CP Al - 42 µm

SH-60 Gearbox Repair

Hardness of Aluminum Powders applied by Cold Spray

Galvanic Couple – ASTM G71

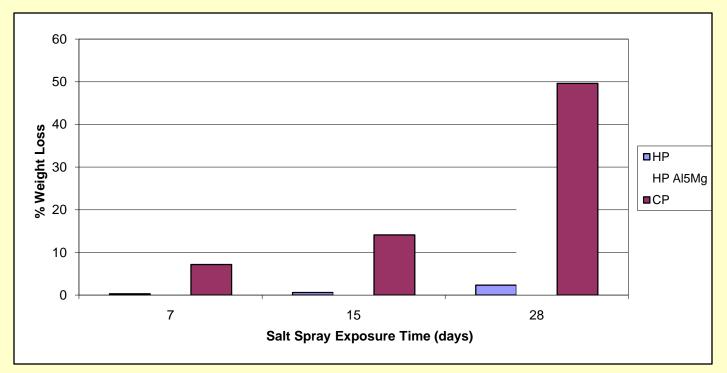

Experimental:

- Mg and Al-coated Mg coupons electrically coupled by ZRA in 3.5% NaCl
- Current measured

Results:

- HP AI yielded no galvanic current (similar to Mg-Mg couple)
- AI-5Mg shows higher current due to contamination from crucible

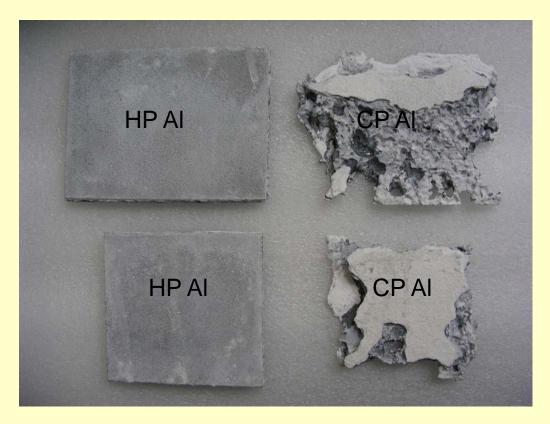
Coating	Mean	Std Dev	95% CI
None (Bare Mg)	0.046	0.03	0.00, 0.09
HP Al	0.029	0.01	0.00, 0.04
Al-5Mg He	0.155	0.04	.11, .20
Al-5Mg N2	0.473	0.06	.37, .57
5356	2.03	0.34	1.61, 2.46
4047	2.24	0.14	· · ·
CP A1	2.33	0.38	1.86, 2.81


Galvanic Couple – Salt Spray

Experimental

- Mg panel coated with AI on both faces with Mg edges uncoated (sandwich)
- Weight loss determined (2 samples per condition)

Results


- HP AI coated panel showed little material loss
- CP AI subject to enhanced galvanic corrosion and cathodic corrosion

Galvanic Couple – Salt Spray

Corrosion Testing – Galvanic Couple (ASTM B-117)

- HP AI showed little material loss
- CP AI subject to enhanced galvanic corrosion and cathodic corrosion

Comparison galvanic coupling of high purity and commercially pure Cold Spray aluminum coatings with ZE41A-T5 Mg panel (0.25" thick) after two weeks in salt spray chamber (ASTM B117). Coating applied to front and back of Mg (Edges of Mg exposed). Left – high purity AI. Right – commercially pure AI.

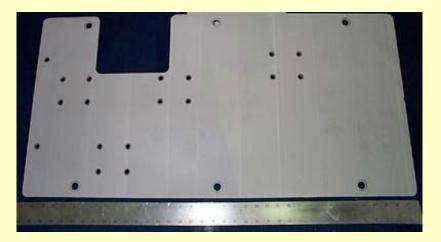
SH-60 Gearbox Repair

- Summary
 - Leveraged ESTCP Program
 - Performed Corrosion and Materials Evaluation
 - Developed Powders for improved corrosion
 - Provided input for selection of powders with optimal combination of properties

- Appliqué Armor was corroding at a very high rate
 - Damage to CARC Paint
 - Handling installation and removal
 - Shipping
 - Storage
 - Operation
 - Maintenance Procedures
- Cadmium coatings on bolts and washers were an environmental hazard

- Visit Camp LeJeune to understand installation, removal, operating conditions, and storage
- Indentified corrosion mechanisms and initiation path
- Evaluated steel, rubber, binder and CARC coating
- Evaluated CP AI, Zn and Zn-AI coatings
- Coatings applied with Cold Spray and thermal spray and sealed with mil spec paint.
- Preformed alternate Immersion tests at ARL and at LaQue Corrosion Technology Center, environmental exposure, impact testing, galvanic testing
- Evaluated alternatives to cadmium plated bolts
- Coated four full sets of armor
- Field tested on two long term deployments
- Cost analysis

Mild Steel Rubber Hardened Steel



Cold Spray Coated Panels

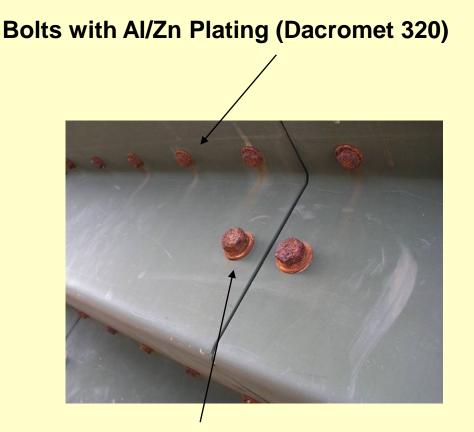
6669255-C - APK Step

Alternate Immersion Testing Top- With CP-Al Bottom – Uncoated

6669266 – APK Slope

Deployment Results - Cold Spray

B212: Step - Cold Spray CP-AI Inside and outside B205: Step -Thermal Spray CP-AI Inside and outside B201: Thermal Spray CP- Al Inside Zn Primer outside


Deployment Results - Cold Spray

B205: Slope – Cold Spray CP-AI inside and outside CARC damaged - Armor still protected

Deployment Results - Fasteners

Cadmium Plated Bolts

Cadmium and Dacromet 320 have similar performance – Dacromet 320 does not have the environmental hazard

Deployment Summary

Field Test Coating Matrix						
Armor Set	EAAK 1	EAAK 2	EAAK 3	EAAK 4		
Slope Inside	TS CP-AI	TA CP-AI	CS CP-AI	CS CP-AI		
Slope Outside	TS CP-AI	TA CP-AI	CS CP-AI	CS CP-AI		
Step Inside	TS CP-AI	TA CP-AI	CS CP-AI	CS CP-AI		
Step Outside	Zn – primer	TA CP-AI	Zn - primer	CS CP-AI		
Edge	Polysulfide	Polysulfide	Polysulfide	Polysulfide		
Valley Bolts	Al/Zn	Al/Zn	Al/Zn	Al/Zn		

Typical Deployment Activities April to Oct Swim to transport ship Swim to shore/return – training exercises 12 ship to shore-operations Four different European locations

Deployment Results

Damage Mitigation

- Panels coated with CP-AI performed better than panels with a thick zinc primer during deployment
- Panels coated with CP-AI using Cold Spray performed better than panels coated using thermal spray
- Edges damaged during installation and removal
 - Edge sealants protect edges
- Damage during shipping and handling
 - Al coating and sealant improves corrosion resistance
- Impact during use
 - Al coating and sealant improves corrosion resistance
- Application of CARC with large silicon carbide particles
 - Change application procedure and SiC particle size
- Cadmium plating is an environmental and health hazard
- Al/Zn (Dacromet 320) greatly reduced environmental and health hazards
- Cold Spray cost competitive with wire-arc thermal spray
- Developed Cost Software verified coating large panels

Summary

iMAST/Navy ManTech

- Bridge the technology transition valley of death
- Clear transition path
- Can be used to support existing program
- Excellent technology transfer/ implementation
- Can work with OEMs, government, and equipment manufacturers

Acknowledgements

Work sponsored by United States Navy Manufacturing Technology (ManTech) Program, Office of Naval Research,