

CSAT2015, June23-24, Worcester

# Warm Spray Technology for Ti, Ti6AI4V and WC-Co

## Seiji Kuroda National Institute for Materials Science

# Outline

- 1. Warm Spray vs. Cold Spray Status of WS equipment development
- 2. Ti and Ti6-4
- 3. WC-Co
- 4. Summary

### Spray processes: an overview



Classification by the temperature & velocity of sprayed particles





<sup>\*</sup>at substrate position of 200 mm

## Critical velocity vs. particle temperature



M. Watanabe

#### Work with HSU on high strength Cu-alloy



7



Data by S. Krebs, Helmut Schmidt University

### New development: High-pressure warm spray

MOTOMAN



Plasma Giken NIMS, Kagoshima U.



Gas: mass flow meters.

Ignition, gas flow rates control, powder feed **à**Program operation

# Case 1: Titanium & alloy

- Excellent corrosion resistance
- Superb specific strength
- Highly reactive with oxygen and nitrogen at high temperature
- Effects of nitrogen gas flow rates

## List of spray conditions

### Powder: Sumitomo TILOP -45 $\mu m$

| Condition ID | Kerosene<br>(dm³/min) | Oxygen<br>(dm <sup>3</sup> /min) | Nitrogen<br>(dm <sup>3</sup> /min) | Spray distance<br>(mm) | Barrel length<br>(mm) |  |
|--------------|-----------------------|----------------------------------|------------------------------------|------------------------|-----------------------|--|
| WS1          | 0.39                  | 805                              | 500                                |                        |                       |  |
| WS2          | 0.35                  | 714                              | 1000                               | 190                    | 200                   |  |
| WS3          | 0.3                   | 623                              | 1500                               | - 300                  |                       |  |
| WS4          | 0.27                  | 545                              | 2000                               |                        |                       |  |

## Cross sections

• Z=280mm

Coating structure by solid particles







## **Oxygen Content of Coatings**



## XRD spectra of sprayed coatings



### **Ti6AI4V: FEDSTOCK POWDER**



| Element | N<br>max | C<br>max | H <sub>2</sub><br>max | Fe<br>max | O <sub>2</sub><br>max | AI | V | Residual<br>(total) | Ti      |
|---------|----------|----------|-----------------------|-----------|-----------------------|----|---|---------------------|---------|
| wt [%]  | 0,01     | 0,02     | 0,004                 | 0,14      | 0,155                 | 6  | 4 | 0,1                 | balance |

#### Microstructure of Ti6Al4V formed by HIGH and LOW Pressure Warm Spraying

1 MPa

#### 500dm3/min



#### 4 MPa

#### 500dm3/min



#### 1000dm3/min

1000dm3/min

1500dm3/min



1500dm3/min







#### Porosity and Oxidation dependence

Ti6Al4V formed by HIGH and LOW Pressure Warm Spraying



### **TENSILE TEST OF MINI SPECIMENS**



Size and shape of mini specimen: 8mm L x 2mm W

Way of specimens' elongation measurements



Grips for tensile test of mini specimens



### **HEAT TREATMENT** (sintering, composition and distribution of a and b)

Ti6AI4V- mill, recrystallization and beta anealing (vacuum);



### **ENGINEERING STRESS-STRAIN CURVES**





### FRACTURE SURFACES of 4 MPa-WS at 1.0 m<sup>3</sup>/min NFR



### SUMMARY – CORRELATION BETWEEN UTS and epl



## > 5mm deposit of Ti6-4 on Ti6-4 by HP-Warm Spray



## Case 2: WC-Co Cermet coatings





#### Hard Chrome Replacement



Landing gears, Construction machines Rolls in steel and paper plants Blades in turbine engines Molds for casting and forming

### Microstructure Observation



#### Lapping, polishing cost



# Summary

- Warm spray takes advantages of both kinetic and thermal energy to form dense and thick metallic and composite coatings.
- With WS one can explore a wide range of v<sub>p</sub>, T<sub>p</sub>.
   HP-WS can reach the velocity range close to He-driven CS.
- Oxygen pickup is not as low as CS but acceptable for many engineering applications.
  - Examples: Ti alloy and WC-Co
- Other materials: Ni, Co, Cu, amorphous allovs.
  PEEK.

## If you are interested,

Contact: Kuroda.Seiji@nims.go.jp

### References:

- <u>S. Kuroda</u> et al. : "Current Status and Future Prospects of Warm Spray Technology" J. Therm. Spray Technol. **20**[4] (2011) 653-676
- R.M. Molak et al. : "Warm Spray Forming of Ti-6AI-4V" J. Therm. Spray Technol. 23[1-2] (2014) 197-212

# Acknowledgement

- J. Kawakita, M. Watanabe, H. Araki (NIMS)
- H. Katanoda (Kagoshima University)
- H. Fukanuma, N. Ohno (Plasma Giken)
- R. Molak (WUT)