

Abstract

NAVAIR involvement with cold spray dates back to 2005 with involvement in the US Army led Environmental Security Technology Certification Program (ESCTP) project. The project was aviation focused to use cold spray metallization to repair corrosion damage found on magnesium helicopter gearboxes. The Army ESTCP project built the foundation of the subsequent research and efforts to follow that focused on specific aircraft part repair for corrosion, handling, or wear damage. The success of using cold spray repairs led to procurement of low pressure cold spray systems at each depot facility and an intermediate repair facility as well as procurement of high pressure systems. Low pressure systems are relatively inexpensive, easy to use, portable and ideal for deploying to the depot. It is especially advantageous to deploy low pressure cold spray systems to intermediate aircraft maintenance facilities where repairs there avoid aviation depot level repair and provide local retention of assets. This paper will focus on select efforts to date that are in production using cold spray metallization technology.

Corrosion Repair of US Naval Aircraft by Cold Spray Deposition

Fred Lancaster NAVAIR-NAWCAD Cold Spray Integrated Products Team Lead Cold Spray Action Team 2019 Meeting WPI Worchester, MA June 25-26, 2019

NAVAIR Cold Spray Initiative

• The US Navy has the need to perform dimensional **restoration** of metallic components caused by corrosion, restoration of material due to wear or damage, and the ability to easily and rapidly **repair** structures in place on Naval Aircraft.

 The objective is to develop and transition the cold spray metallization process that can be used to facilitate repairs on naval aviation assets at all levels of maintenance.

•Naval S&T Focus Areas:

- Affordability $\sqrt{}$
- Maintainability $\boldsymbol{\lambda}$
 - Reliability
- •Naval S&T Objectives:
 - Platform Affordability $\sqrt{}$
 - Availability $\boldsymbol{\sqrt{}}$

Cold Spray Technology

Cold Spray Metallization is a thermal spray solid-state coating process which involves heated high-pressure gas (such as He or N2) used to propel 5-75u sized particles of metal, ceramic, and/or polymer through a De Laval nozzle such that the particles exit at supersonic speeds where the particles plastically deform and **consolidate** upon impact to form a dense low porosity coating that forms a **metallurgical bond** into to the surface.

Also known as Gas Dynamic Spraying, Kinetic Metallization, Supersonic Particle Deposition, High Velocity Powder Deposition and Kinetic Spraying

- Main gas pressure 100-1,000 psi
- Gas Temperature 0-1000C
- Gas Flow Rate 30-100 CFM

NAVAR FOR OFFICIAL USE ONLY

- Powder Feed Rate 10-30 lbs/hr
- Particle Velocity 300-1500 m/sec
- Particle Size 5(20)-75 um diameter

*from H. Assadi, www.modares.ac.ir/eng/ha10003/CGS.htm

"Cold" Is Relevant

DoD Affiliated CS Systems 2008

Equipment Suppliers

Company		Robotic	Manual	НР	LP
<u>Inovati - USA</u>	Ö Indvati	Х	Х	Х	Х
<u>Centerline Systems</u> - Canada		Х	Х	Х	Х
VRC Metal Systems - USA		Х	Х	Х	
Impact Innovations- Germany <u>(formerly CTG)</u> ASB Industries – US distributor		Х	Х	Х	Х
RUAG Australia RUAG Mecanex USA	Together ahead. RUAG	X* *Portable Trail Mounted	X er	Х	Х
RUS SONIC Technology Inc			Х		Х
Dycomet			Х		Х

Current Equipment in NAVAIR

System	SST Series P	KM-PCS	CTG-4000-17	RUAG/Gen III™
Vendor	Centerline	Inovati	ASB (CGT)	RUAG Australia/VRC Metal Systems
Cold Spray Approach	Low Pressure	Low Pressure	High Pressure	High Pressure
Max Gas Temperature	550°C	3.8kW heater=1000°C	800°C	15kW heater=800°C 45kW heater=1200°C
Max Gas Pressure	250 psi	130 psi	20 bar (290 psi)	1000 psi
Gas supply needed	300 psi	300 psi	350 psi	1250 psi
Gas types	Helium Nitrogen Compressed Air	Helium	Helium Nitrogen	Helium Nitrogen Compressed Air
Gun	Hand-Held	Hand-held or Robotic	Robotic	Hand-held or Robotic, Robotic Portable
Dimensions	Wheeled Cart	Fixed Workcell	Fixed Workcell	Mobile, Trailer Mounted

- The Centerline P Series and the KM-PCS systems are currently used in production.
- Non-structural repairs, no fatigue debit/credit accounted for.
 - Coatings and Dimensional Restoration

Cold Spray Powders for Dimensional Restoration & Corrosion Resistance

Substrate	Powders	Refined			
Magnesium Casting ZE41A	AI 6061*/SST A5001 [®] /CP AI-1100	yes			
Magnesium Casting AZ91E	AI 6061*/ SST A5001 [®] /CP AI-1100	yes			
Aluminum Casting A357o r 356	AI 6061*/AI 4047*/ SST A5001 [®] /CP AI-1100/AI-Trans [®] 7075 w/ Ni				
Aluminum 7075-T7351	Al-Trans Chrome [®] /Al 7075*				
Aluminum 2014-T61	Al-Trans Chrome [®]				
AMS 6265 Steel	W-C-Co				
*efficient when applied with a high pressure system					

- Aluminum 1100 Series is an all around coating used for
 - Dimensional restoration for blending/filling
 - A general dense aluminum coating
- Aluminum 6061 Series is used for more robust areas
 - Larger dimensional repairs
 - Wear susceptible areas
- Tungsten Carbide Cobalt (WCCo) is used as an alternative to hard chrome plating for wear areas.

Current Production Parts Summary

FRC	Nomenclature	Part Number	Replacement Cost*	Quantity Recovered to Date	Costs Avoided**
Southwest	F/A-18A/B/C/D AMAD Gearbox Housing (PTS Axis)	42312-231	\$31,593.00	11	\$318,648
Southwest	F/A-18A/B/C/D/E/F APG-73 Radar Rack Assembly	5099984	\$193,510.00	20	\$3,690,200
Southwest	F/A-18E/F/G AMAD Main Housing (Hydraulic Pad)	764035B	\$168,573.00	10	\$1,672,730
Southwest	F/A-18E/F AMAD Main Housing (Internal Gear Damage)	764035B	\$168,573.00	4	\$666,292
Southwest	F/A-18E/F Brake Carrier	2612020	\$8,057.00	65	\$347,165
Southwest	F/A-18E/F/G AMAD Hydraulic Gear Shaft	764123	\$1,485.92	42	\$9,492
Southwest	F/A-18A/B/C/D Outboard Wheel Bolt Spot Face	2606302-1	\$7,664.67	0	\$ -
East	H-1 Combining Gearbox		\$756,000.00	12	\$9,072,000
			Totals:		\$15 776 527

Corrosion Mitigation/Prevention Strategy

- Repair before structural damage occurs to achieve full part life.
 - Cold Spray as an alternative to Blend and Fill
- OSD Corrosion Office LMI Cost of Corrosion Studies back up blend and fill repair.

 Estimated \$2.6-\$2.8 billion per year for Navy/MC aircraft due to corrosion

Highest Contributors to Navy/MC Corrosion Cost by LMI System Highest 20 Contributors to Navy/MC Corrosion Cost by Work Unit Code

04	Power Distribution And Electrical	\$320	1
01	Engines	\$229	2
02	Airframe	\$121	3>
35	Amament	\$111	4
09	Miscellaneous Aircraft	\$95	5
19	Avionics	\$77	6
40	Enderson and al Oceand	800	7

WUC	WUC Desciption	Corrosion cost (in	Rank	
		millions)		
03	Scheduled inspection	\$569	1	
04	Special inspection	\$384	2	
41	Airframe-Structural components	\$243	3	
13	Alghting/aunching system	\$60	4	
14	Directional flight	\$58	5	
75	Weapon delivery systems and associated equipment.	\$58	6	
15	Rotary wings	\$48	7	
29	Power plant installation	\$45	8	
22	Turboshaft/turboprop engines	\$43	9	
27	Turbotan engines	\$40	10	
74	Weapons control systems	\$40	11	
42	Electrical power supply/distribution/lighting systems	\$35	12	
46	Fuel systems	\$33	13	
		A.S. 1		

NAVAIR FOR OFFICIAL USE ONLY

Distribution A: Approved for Public Release, Distribution Unlimited

Corrosion Performance

- Typical coatings stackup for magnesium gearboxes.
 - Dow pretreatment, (*rockhard) Epoxy Prime, Polyurethane Paint
- Performance significantly better with 3-4 mils of CS
- Across the board has mitigated corrosion in every application or better than current system
- Validated by Australian DSTO/RAN tests on active helicopter flying in marine environment full life after application: typical of other applications NAVAIR FOR OFFICIAL USE ONLY Distribution A: Approved for Public Release, Distribution Unlimited

Blend & Fill Process

- Cold spray metallization can apply back base metal or tailor galvanic protection by applying a new, better alloy, than an organic coating (paint/epoxy/sealant).
- Repairs within structural limits, brings part back to original dimensions
 - No fatigue debit or credit, considered a coating
- Mitigates future corrosion and can be reapplied indefinitely
- If universally applied, potential to mitigate over 80% of corrosion issues that lead to structural damage.

Magnesium On Aircraft

Gearboxes

Generator Housings

NAVAIR FOR OFFICIAL USE ONLY

Accessory Drives

Magnesium + Seawater = Corrosion

ZE41A Magnesium Gearbox

- Wear damage caused by a faring rubbing, repair .090inch thick
- Repaired manually using 1100 series aluminum, or 6061 preferred using nitrogen as the carrier gas
- Repaired by depot artisans and Intermediate level Marine Aviation Machinists

Aluminum Avionics Rack

Al-Trans 10-20-50 Chrome® aluminum blend onto the 7075-T7351 aluminium rack using a low pressure cold spray system, with Helium.

- Chrome used as an aggregate to compress aluminum alloy into surface
- Better alloy than 7075, mitigated pitting restored matched set parts. Distribution A: Approved for Public Release, Distribution Unlimited

Aluminum Gearbox Housing

Alloy A357 Cast Aluminum (Also repaired similar A356 Cast Aluminum)

- **Fretting Corrosion Damage**
- **Multiple alloys** applied to during repair development, all are flying, **qualified**
 - 4047 AI high pressure, nitrogen
 - CP1100 series AI (SST A5001®) Low Pressure using nitrogen
 - Aluminum-nickel blend (Al-Trans® 7075 with nickel) low
 pressure using helium tribution A: Approved for Public Release, Distribution Unlimited

Wing Leading Edge Cover

Distribution A: Approved for Public Release, Distribution Unlimited

R FOR OFFICIAL USE ONLY

- Pitting around lower edge fastener holes.
- Deicer boot placed on top
- No primer under deicer boot
- Repaired using Al-Trans Chrome® using a low pressure system.

Brake Carrier Corrosion Repair

 Pitting of aluminum 2014-T61 cast brake carriers

<u>High use item</u>

Current repair is plasma spray

- 50 percent of the brake carriers reprocessed due to coating disbonds after processing.
 - Injects heat into the part requires post processing heat treatment.
- Al-Trans Chrome 10-20-50® powder using helium as the carrier gas using a low pressure cold spray system, robotically.
 - Approximately 0.040-inch-thick coating, and then machined back to the final dimension.
 - 70% of cost, faster process, 100% quality, no post heat treatment,

Hard Chrome Alternative

- Part: AMS 6265 steel, part of accessory gearbox
- Wear damage to top sealing surface, dimensional restoration
 - Previous repair was hard Chrome Plating
- Repaired using low pressure system using helium to deposit Tungsten Carbide Cobalt
 - Faster (15 min/part), no post hydrogen embrittlement bake
 - Tested for 3000 hours on gearbox test stand, better than chrome performance for sealing.

AVAR FOR OFFICIAL USE ONLY Distribution A: Approved for Public Release, Distribution Unlimited

S&T Analysis

Issues for all materials of interest to the Navy/NAVAIR

- Process parameters
 - Repair limitations
- Coating optimization
 - Powder
 - Surface preparation
 - Spray parameters
- Coating bond strength
- Coating cohesion
- Post-coating preparation
 - Sealing/Pretreat
 - Welding
 - Machining
- Microstructural characterization
 - Metallurgical bond
 - Coating Porosity
 - Dislocation density
 - Coating formation
- Mechanical properties (comparison to existing technology)

A R FOR OFFICIAL USE ONLY

Fatigue, Tensile, Residual stress

Fatigue/Tensile

Corrosion

- Evaluation/Development of NDT
- Significance of Flaws
- Specifications and Requirements
- In-service repair
- Safety/Environmental concerns
- Application based cost benefit analysis
- Modeling, process & materials
- Logistics constraints
 - Material
 - Equipment

Need to tie fundamental understanding of process parameters/operating envelope to coating properties

	2 TOTAL						
ł	NAVAIR Cold Spray Developmental Timeline						
20	Past: 10 years		Current: 2018-2019		Future: 5 Years		
	Comparative Analysis	Dimensional	Corrosion is a major A/C degrader, Estimated \$2.6- \$2.8 billion per year for Navy/MC aircraft due to corrosion. Major impact to aircraft readiness. Repair		COTS LP Units installed & being used in all Navy/USMC Depots, Squadrons & MALS		
	Hazard & Benefit of	Restoration Applications Developed	the substrate before strue achieve full part life. NAVAI	Helicopter Gearbox Coating Stackup Mod			
	Technology		CS as an alternative to blend and hit-Dim/Corrosion.Finalize NAVAIR CS Standard Work Packageart Specific LPS'sLow Pressure Units for Corrosion ControlDelivery of FCT Robotic Unit: Feb 2019		Replace existing process of ordering, utilizing, and ultimately scrapping long-lead, high-cost		
	SBIR/Sect21 9/DLA-	Part Specific LPS's			parts, using developed structural qualified Cold Spray repair proce	tural repair processes.	
	Transition	Developed	Standard Navy NAVFAC install & EH&S Guidance		Modeling &	90% Parts	High Pressure
	Deployment of CS Systems to all Depots & Intermediate Level (DLA 2010, SBIR TTA 2013)		Technical Warrant Holder Concurrence: Need authorization from Project Offices for Cold Spray to meet repair requirements & incorporation into specific T/M/S repair instructions		Simulation for Cold Spray Repair Evaluation	corrosion/ abrasion can be repaired by Cold Spray	assisted Cold Spray used for Structural Repairs

Cold Spray Technologies

COTS Units:	COTS Units Expansion:	Foreign Comparative Test	Expansion COTS Units:
Available, Used in Production	2018-19 Establish NSN's for	(FCT) Units:	Robotic Portable, Robotic work
at 2/3 Depots since 2010, 1 at	low pressure portable systems	Delivery, Feb 2019	cell, Hand-held
I-Level since 2016	& powders.	System demonstration May	Standard CIP procurement
Housed inside dust	Low Pressure, low cost,	2019	process
booths, doing	Hand Held Units to be	Used to perform robotic	Title III Additive Repair
dimensional repair with	used in Depots and I-Level	high pressure repair on-	machining centers at all
robotic controls followed	for corrosion control	aircraft. Coating	Navy Depots
by CNC machining.	maintenance as an	application, dimensional	Addition of Laser Ablation
Hand held units for spot	alternative to current	restoration, potential	technology to enhance
repairs.	blend and fill practice.	structural repairs.	existing COTS CS Units

NAVAR FOR OFFICIAL USE ONLY

A۱ at

and have

Distribution A: Approved for Public Release, Distribution Unlimited

Near Term 1-2 Years Plan

- <u>General Authorization for Cold Spray as a blend and fill</u> <u>alternative</u>
- Identify all candidate parts for all aircraft type/model/series
- Develop a NAVAIR Cold Spray Quality Assurance Plan
 - Qualification guide/Process Guide Similar to NAVSEA's
- Develop NAVAIR Aerospace grade powder specifications
- Safety Guidelines standardized by NAVFAC
- Develop a standard training plan.
- Full Implementation of physical capabilities at all FRC's
- Standardize workcells and systems installation
- Deploy Robotic Portable High Pressure Field System

Long Term Plan

- Repair other metals and alloys
- Hard chrome plating alternative
- Repair of landing gear components
- Structural repair
 - Useful tool for Service Life Extension Programs
 - Alternative to fastened doublers
 - Alternative to bushings
- Laser Assisted Cold Spray (ie laser cladding)
- Process modeling
- Logistics: Simplify powder packaging and delivery

Thank You.