



# Cold Spray Applications for the Australian Defence Department

### **COLD SPRAY ACTION TEAM (CSAT) 2012**

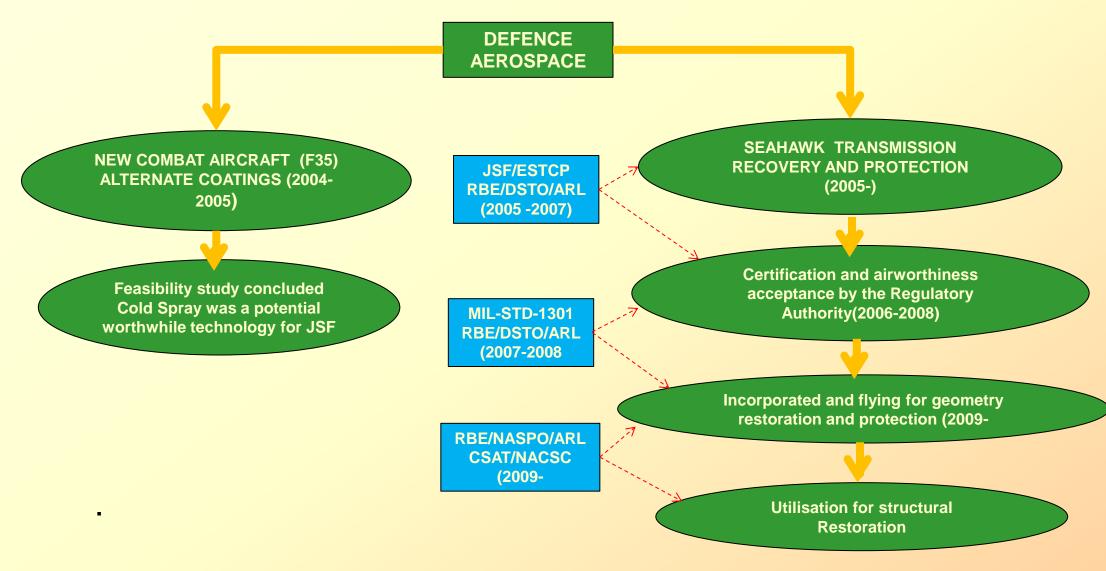


Presented by
Neil Matthews
Chief Engineer Rosebank Engineering



### **Presentation**

- Introduction
- Cold Spray Engagement In Australia Defence Aerospace
- Acceptance of Cold Spray as an Approved Technology
- Cold Spray Applications In Defence Aerospace
- Cold Spray Structural Integrity Enhancement/Restoration
- CTD Portabilisation


Rosebank Enineering Ptv Ltd

Closing Discussions/Questions

### **Introduction**

- Rosebank Engineering is a major research centre for the development and application of Cold Spray for aerospace and Defence applications in Australia.
- This technology provides a number of exciting and cost benefit outcomes particularly in the corrosion protection and restoration of corroded/damaged metallic components/structure to an acceptable level of structural integrity and functionality.
- To this end the presentation outlines process of evolution of the technology in Australia through local and international collaboration, current Cold Spray application activity to date and the on- going development of this technology for structural repair and restoration.

### **Technology Engagement – Defence Aerospace**



### Acceptance of Cold Spray as an Approved Technology

- Cold Spray Technology is an approved is a Military Standard MIL-STD 3021\_ Materials Deposition, Cold Spray (issued AUG 08)
- Rosebank Engineering developed and completed an Acceptance Protocol in conjunction with DSTO
- The Acceptance Protocol has been used to gain DAR acceptance of Cold Spray applications on numerous Seahawk Component.
- DGTA considers that sufficient evidence exists to support Technology Transition for Cold Spray within the aerospace community.
- □ DGTA has established a Technology Transition Working Group (TTWG) to transition the technology for all users and expand the Cold Spray application for structural restoration/enhancement

Rosebank Enineering Pty Ltd

Slide 5

### **Benefits of Cold Spray**

Demonstrable cost saver in sustainment costs (RAN Seahawk transmission cost savings 35% – 50% (\$4M +over three years)

(US DOD 2009 Report on the Annual Cost of Corrosion as 24 % of maintenance cost –Air Force 31%)

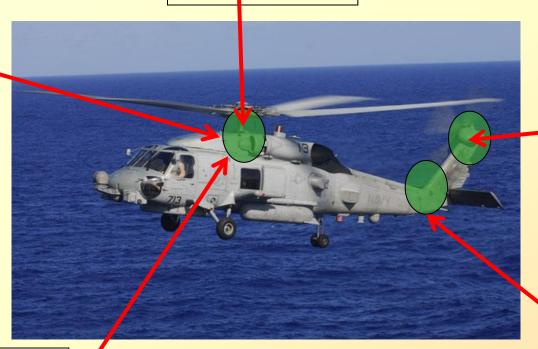
- Can be applied to recover damaged geometry without adversely affecting the substrate
- Reusable for reclamation of eroded surfaces and application of wear resistant coating.
- Initial trails have shown that it can be used to enhance structural integrity
- Significant reduction in O H & S risks associated with a number of current in-service applied coatings on both legacy and newly acquired platform

### Acceptance Strategy of Cold Spray as an Approved Technology

- Cold Spray(Cold Spray) Technology is an approved is a Military Standard Mil- STD 3021\_ Materials Deposition, Cold Spray (issued AUG 08)
- Rosebank Engineering developed an Acceptance Protocol matrix and in conjunction with DSTO has completed a validation test program
- □ The aim of the Acceptance Protocol was to demonstrate that the application of Cold Spray was not deleterious to range of common used aerospace materials

### **Acceptance Test Protocol**

- Aluminum powder coatings (Pure Al and 6061)
- Four substrate material types (ZE41A Magnesium, 4130) Steel, Al Alloy 7075, Al Alloy 2024
- 9 test regime
  - Corrosion
  - Tensile
  - Compression/Bearing
  - > Shear
  - Fatigue
  - Residual Stress
  - Impact

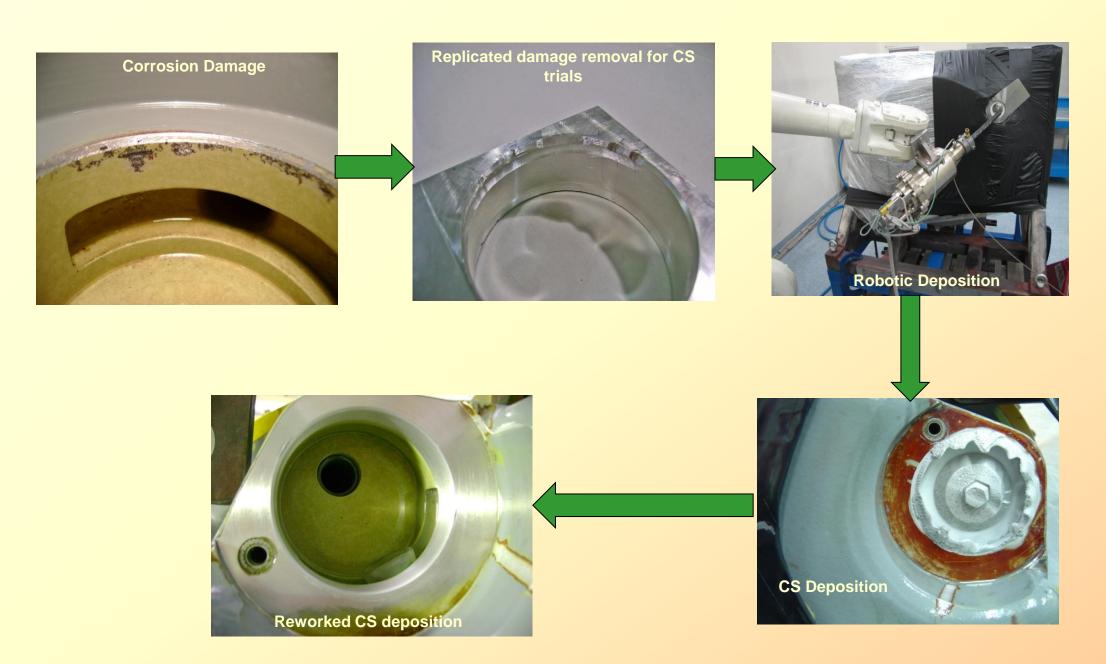

Rosebank Enineering Pty Ltd

- Hydrogen Embrittlement
- Coating Tensile Strength

### RBE Cold Spray Accepted Seahawk Applications

RBE has applied **Cold Spray to** Input module webs and mounting faces

RBE has applied **Cold Spray to** main module sump and Flight control pad




RBE has a applied **Cold Spray to TRGB** feet

**RBE** has applied Cold **Spray to Accessory Module mounting faces** for corrosion protection and geometry restoration

**RBE** has applied Cold Spray to IGB feet for corrosion protection and geometry restoration

### RBE Cold Spray Seahawk Main Module



### Seahawk Intermediate Gearbox (S/N A005-01595)

#### **Before**





**During** 

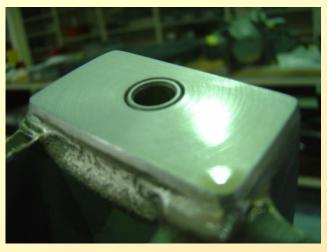


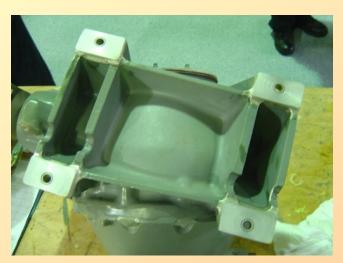









### TAIL ROTOR GEAR BOX (S/N A232-00172)


**During Application** 





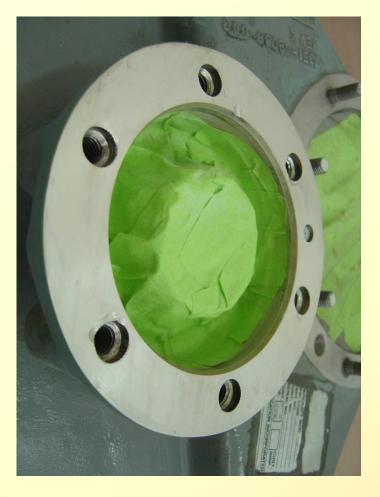
**After Machining** 





### Input Module (S/N A264-02946)

Before During After

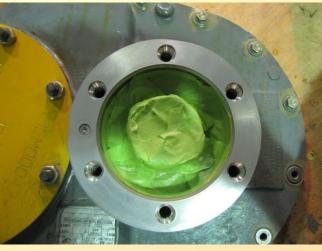






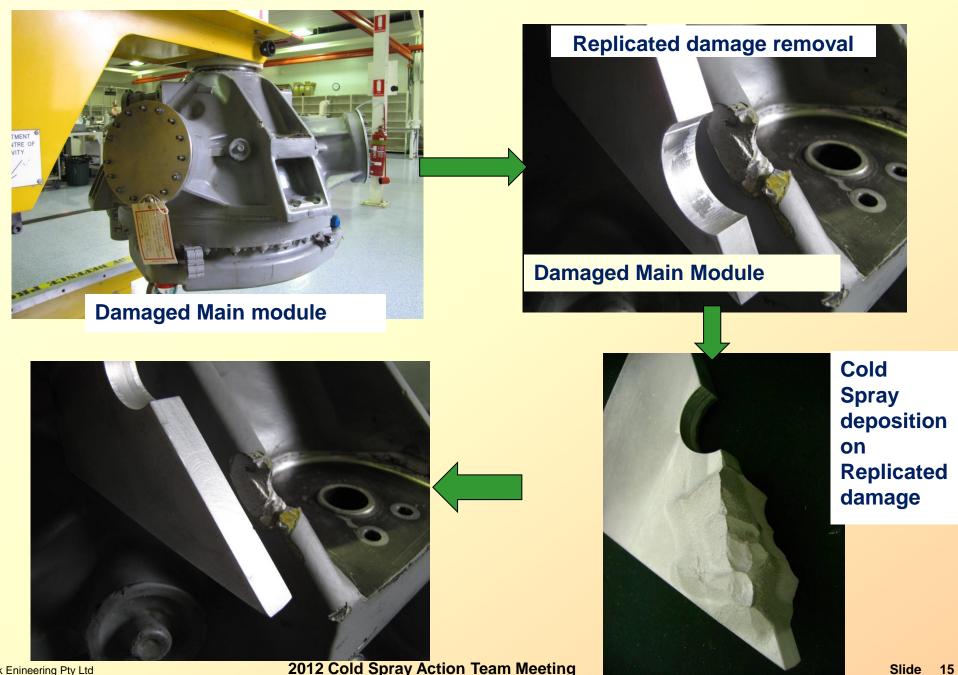

### Accessory Module (S/N A258-003679)

**Before** 




**During** 

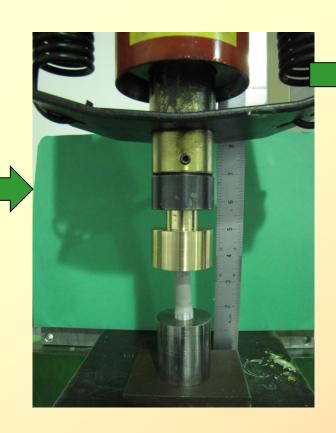





**After** 






### **Trial Embedded Applications**



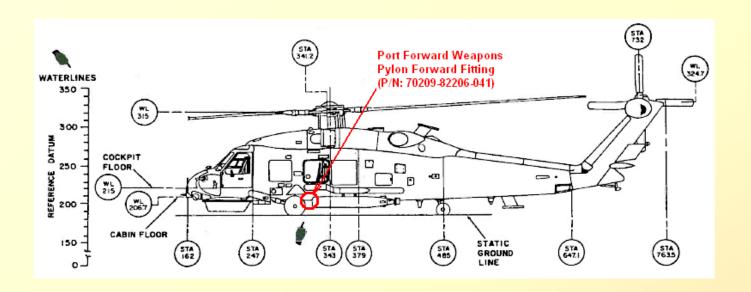
### **Trial Thread Applications**



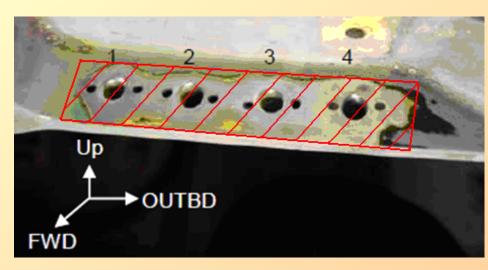
**2024-T351** bar coated with 7075 powder with machined thread



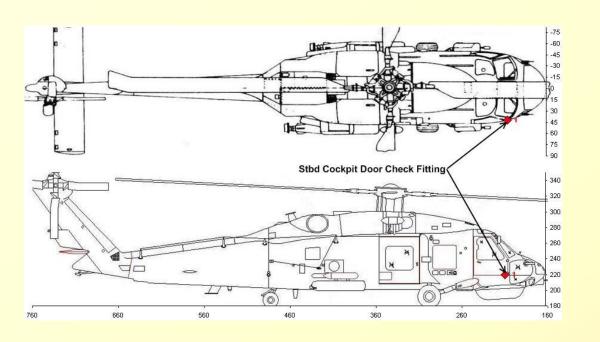
**Buckled 2024 bar with** minimal thread damage


Threaded bar under compressive load 2012 Cold Spray Action Team Meeting


### Structural Integrity Enhancement/Restoration


### Question

Can Cold Spray be used to enhance/ensure structural integrity????


### Potential Application on Seahawk Pylon Fairing







### Potential Application on Seahawk Cockpit Fitting









### **Corrosion Impact**

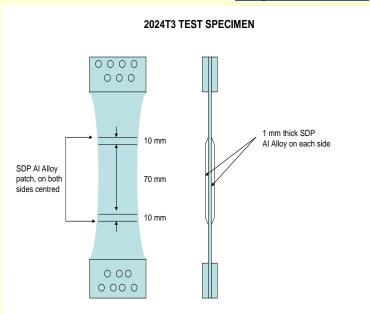


### Structural Integrity Enhancement/Restoration

AUS DoD/FAA Damage Tolerance Requirements are as spelt out in the US Joint Services Structural Guidelines JSSG2006 and as such we consider that for cold spray certification we need

- 1. Experimental evidence that the technology can ensure/extend operational life and meet the stringent damage tolerance requirements.
- 2. A predictive capability that enables the effect of Cold Spray application on crack growth under operational load spectra to be quantified.
- 3. Non destructive inspection tools for examining the integrity of the Cold Spray mod/structure throughout its life.

### **Structural Integrity Enhancement/Restoration**


Rosebank Engineering along with its collaborative research partners are investigating the potential of Cold Spray research in two areas:

- 1. Application on thin Skins (PSE) Monash University
- 2. Application on primary structure (SSI)- Defence Science and Technology Organisation.

### **Application on thin Skins**

#### **Experiment 1**

#### **Experiment 2**

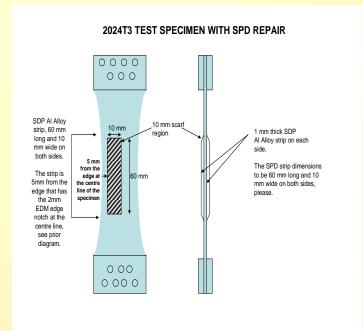


7075 CS doubler
Applied peak stress  $\sigma_{max} = 180 \text{ MPa}, R = 0.1 \text{ MPa}$ 

7075 CS doubler Applied peak stress  $\sigma_{max}$  = 270 MPa, R = 0.1 MPa

#### **OUTCOME**

Baseline test specimen with notch and no Cold Spray Doubler - Failure at 35,000 cycles


For test specimen with notch and the Cold Spray Doubler -There was no growth, or damage, after 60,000 cycles. Test stopped

#### **OUTCOME**

Baseline test specimen with notch and no Cold Spray Doubler - Failure at 1,800 cycles

For test specimen with notch and the Cold Spray Doubler -Test stopped 13,700 cycles with a crack of 3.7mm

#### **Experiment 3**

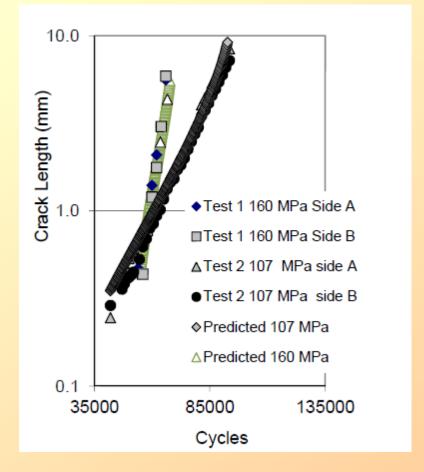


7075 CS doubler Applied peak stress  $\sigma_{max}$  = 180 MPa, R = 0.1 MPa

#### **OUTCOME**

Baseline specimen (no Cold Spray) failed after ~ 40,000 cycles

Specimen with Cold Spray - This test was terminated after ~ 345,00 cycles with no growth from the edge crack or damage in the Cold Spray.


## Predicting Crack Growth In Cold Spray Repaired Structures

A variant of the Hartman-Schijve crack growth equation was used to predict crack growth.

 $da/dN = D(\Delta K - \Delta K thr) 2/(1 - K max/A)$ 

#### **Test Program**

Two 1.27 mm (thick) x 76 mm (wide) 2024-T3 Al alloy SENT (single edge notch tension) specimens with a 0.5 mm semi-circular notch were tested at 5 Hz, max stress 160 MPa and R=0.1 and 5 Hz, max stress 107 MPa and R=0.1 respectively.



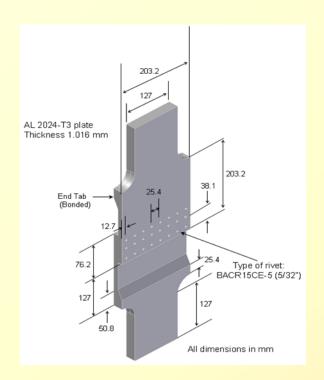
## Predicting Crack Growth In Cold Spray Repaired Structures

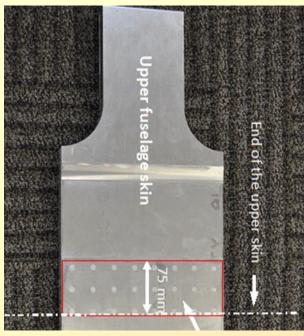
Having established the ability of Hartman-Schijve crack growth equation variant to predict crack growth in the baseline specimens the equation was used to predict Crack length in Experiment 2 specimen.

The predicted the crack length after 13,700 cycles for the Cold Spray repaired specimen tested at □max = 275 MPa and R = 0.1 including the length of the starter crack, of 3.1 mm which is in good agreement with the measured length of 3.7 mm

### **Application to Mechanically Fastened Joints**




Multisite damage (MSD) around fasteners


Damage around fasteners due to corrosion



### **Application to Mechanically Fastened Joints**

Studies on the ability of Cold Spray to seal mechanical joints from the environment have now been undertaken using a specimen geometry developed as part of the FAA Aging aircraft program and patents lodged







### **Application to Mechanically Fastened Joints**

### <u>OUTCOME</u>

 Cold Spray increased the Limit of Liability (LOV) of the joint by a factor of more than 3

 Cold Spray has the potent to effectively seal the lap joint and thereby protect against the onset of corrosion damage.

### **Application on Primary Structure (SSI)**

### Application to of Cold Spray to an F/A-18 centre barrel undergoing full life cycle fatigue testing

| Location<br>Reference | Location Description                                      | No Of Applications |
|-----------------------|-----------------------------------------------------------|--------------------|
| 1                     | Fuel tank area                                            | 1                  |
| 2                     | Port Bulkhead Outer (Y470) - around bushed hole           | 1                  |
| 3                     | Upper Skin Port - along fastener line -                   | 4                  |
| 4                     | Starboard Lower Bulkhead - across flat and webbing        | 1                  |
| 5                     | Lower Bulkhead Starboard side and centre                  | 2                  |
| 6                     | Barrel Starboard Internal - across fasteners - 1 location | 1                  |
| 7                     | Starboard Lower Bulkhead (Y453) Lug                       | 1                  |
| 8                     | Starboard Mid Longeron Mounting                           | 1                  |



### **Fuel Tank Area (Internal)**







### Port Bulkhead (Y470) Outer – Around Bushed Hole









### **Upper Skin Portside - Along Fastener Line**



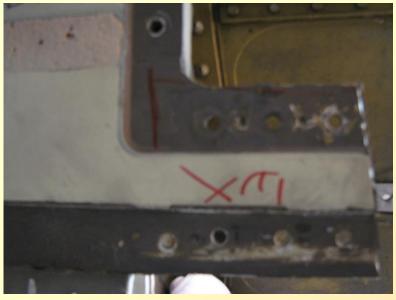




Slide

### **Lower Bulkhead Starboard Side**










### **Starboard Mid Longeron**









### **Cold Spray Portable Unit**

- Rosebank awarded CTD program in Jul 2008 to the design and build a miniaturised field portable Cold Spray unit with the same capability as the large "fixed plant" Cold Spray capability
- ☐ Successful field demonstration held at HMAS Albatross on the 2 and 3 August 2010
- ☐ Hardware upgrades being implemented

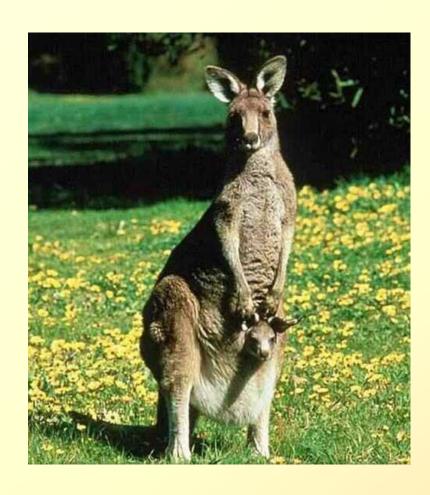




### Other Cold Spray/Powder Deposition Applications

Marine and Land Vehicle Applications

Near Shape Production




 Integration as part of a Broad Powder Deposition Strategy e.g. Laser Cladding





### If all Else Fails





### **ACKNOWLEDGEMENTS**

- □ US Army Research Laboratories (ARL)
- □ Defence Scientific and Technology Organisation
- Monash University
- □ Defence Materials Technology Centre
- □ Royal Australian Navy

### THANK YOU