

**Corporate Technology** 

## Economics of Cold Spray – Fundamental Cost Analysis

**Oliver Stier** 

**CT RTC MAT Coatings** 

Siemens AG, 2012

### Outline

- Motivation
- Cost types of cold spray
  - Equipment hourly rate
  - Consumable costs
- Total costs of cold spray
  - Gas related costs
- Costs factors of cold spray
  - Cost optimization
- Application example: Gas turbine blade bond coating
- Conclusions

#### Fundamental cost theorem

#### Motivation

Basic requirement to economic CS process

- Equipment amortization (regardless whether at OEM or job shop) requires to create as much CS deposit as possible per time unit
- Required amount of powder is determined by deposition efficiency (DE)
- Required amount of gas is determined by mass flow ratio w

For cost efficient use of CS, both w and DE need to be high

Previously published by H. Gabel, D. Helfritch, and others

Page 3

Oliver Stier

CT RTC MAT COA

### Need for general cost model

#### Motivation

### $\boldsymbol{W}$ and DE not sufficient for cost analysis

Extend cost model to

- gas composition
- spraying duration

|              |         | N <sub>2</sub> | He+N <sub>2</sub> 1:1 | He   |
|--------------|---------|----------------|-----------------------|------|
| design M     | _       | 3,17           | 1,93                  | 2,12 |
| Р            | bar     | 50             | 40                    | 40   |
| Т            | °C      | 1000           | 1000                  | 370  |
| V            | m / s   | 1354           | 2062                  | 2002 |
| ρ            | kg / m³ | 0,76           | 0,76                  | 0,76 |
| W            | —       | 5%             | 20%                   | 20%  |
| DE           | _       | 25%            | 90%                   | 90%  |
| powder costs | €       | 520            | 144                   | 144  |
| gas costs    | €       | 10             | 181                   | 361  |
| amortization | €       | 26             | 4                     | 4    |
| total costs  | €       | 564            | 331                   | 510  |

O. Stier, A. Graichen, X.H. Li, *Cost Analysis of Cold-sprayed MCrAIY Coatings for Industrial Power Generation Gas Turbine Blades*, NACSC-2011, 25.-27.10.2011, Windsor ON

Page 4

#### Costs of cold spray

#### Cost types

Costs due to deployment and operation of CS plant

Process consumables powders propellant gases electrical power masking templates, etc. Plant amortization over depreciation period Leasing rates Labor of operation Maintenance and repair

Billing by amount of product

#### Billing by plant use time

CT RTC MAT COA

### Cost measure for cold spray

#### Cost types

Costs for CS deposition of 1 kg material:

$$C_{\rm tot} = C_{\rm pwd} + C_{\rm gas} + C_{\rm elc} + C_{\rm eqp}$$

| Powder costs    | €/kg × kg           | $C_{\rm pwd} = U_{\rm pwd} \ m_{\rm pwd}$                            | amount of product            |
|-----------------|---------------------|----------------------------------------------------------------------|------------------------------|
| Gas costs       | €/kg × kg           | $C_{\rm gas} = U_{\rm gas}  m_{\rm gas}$                             |                              |
| Energy costs    | €/kWh × kWh         | $C_{\rm elc} = U_{\rm elc} \left( Q_{\rm gas} + Q_{\rm los} \right)$ |                              |
| Equipment costs | €/h × h             | $C_{\rm eqp} = U_{\rm eqp} t_{\rm run}$                              | plant use time               |
| Labor costs     | neglected           | depend on country and o                                              | perator skills               |
| Page 6 30 Oc    | ct 2012 Oliver Stie | er CT RTC MAT COA Sieme                                              | ens AG, Corporate Technology |

#### Plant use modes

### **Equipment hourly rate**



Page 7

30 Oct 2012

### Equipment cost definition

### **Equipment hourly rate**

Hourly rate for equipment cost billing

$$t_{run} - gas on = prod. hours$$

$$gas off$$

$$t_{on} + t_{off} + t_{unprod}$$

productive hours = depreciation period 
$$-\sum_{\text{gas off}} t_{\text{unprod}}$$

$$U_{\rm eqp} = \frac{\text{depreciation} + \text{leasing} + \text{maintenance} + \text{repair}}{\text{productive hours}}$$

depreciation = total investment + capital costs

Page 8

Oliver Stier

CT RTC MAT COA

### Equipment cost calculation

### **Equipment hourly rate**

#### Example on calculation of hourly rate



### **Equipment costs**

### **Equipment hourly rate**

Assumed hourly rates for stationary high-performance CS systems

Coverage

- Investment
  - actual CS system
  - handling system (robots)
  - peripherals (cabin, collector, filter, etc.)
  - He recovery system
- Capital costs (interest on investment)
- Leasing rates
  - LN<sub>2</sub> supply infrastructure, incl. PRESUS
  - work space
- Maintenance and repair (spare parts)

# without He recovery system U<sub>eqp</sub> ≈ 50 €/h

• incl. He recovery system

 $U_{\rm eqp} \approx 100 \, \text{e}/\text{h}$ 

#### **Powder consumption**

### **Consumable costs**

Affected by geometric loss *GL* and deposition efficiency  $Y_{\text{DE}}$ 



### Powder gas mass loading ratio

#### **Consumable costs**

### Limited by resulting drop of gas and particle velocities

 $m_{
m pwd}$ 1 g/s2 g/sSimulated 3 g/s 500 Speed (m/s) 3 g/s • Energy transfer reduces T Injected particles reduce 400 effective value of  $\gamma$ (isentropic exponent) 20 40 30 10 50 Diameter (µm)

Ref. B. Samareh, O. Stier, V. Lüthen, A. Dolatabadi, JTST 18, 934 (2009).
W.Y. Li, C.J. Li, Trans. Nonferrous Met. Soc. China 14 Special 2, 43 (2004).
D.L. Gilmore, R.C. Dykhuizen et al., J. Thermal Spray Technol. 8, 576 (1999).

Page 12

Oliver Stier

CT RTC MAT COA

### **Other consumptions**

#### **Consumable costs**

Amounts required to convey  $m_{pwd}$  kg powder

Powder feeding time (h): $t_{on} = \frac{m_{pwd}}{\dot{m}_{gas} w}$ Gas flow time (h): $t_{run} = t_{on} + t_{off}$ Gas mass (kg): $m_{gas} = \dot{m}_{gas} t_{run}$ Energy for gas heating (kWh): $Q_{gas} = m_{gas} c_p (T - T_{amb})/3600$ Thermal loss energy (kWh): $Q_{los} = HL Q_{gas}$ 

CT RTC MAT COA

#### **Generic cost function**

#### **Total costs**

Preceding equations reduce to

$$C_{\text{tot}} = \frac{1 + GL}{Y_{\text{DE}}} \left[ U_{\text{pwd}} + \frac{1}{w} \frac{t_{\text{run}}}{t_{\text{on}}} \left( U_{\text{gas}} + \frac{U_{\text{eqp}}}{\dot{m}_{\text{gas}}} + \frac{1 + HL}{3600} c_p \left( T - T_{\text{amb}} \right) U_{\text{elc}} \right) \right]$$

Page 1430 Oct 2012Oliver StierCT RTC MAT COASiemens AG, Corporate Technology

#### Gases for cold spray

#### **Gas related costs**

Only air, N<sub>2</sub>, He, and their blends feasible gases for CS

$$v = M a = M \sqrt{\gamma R t} = M \sqrt{t} \left(\frac{a}{\sqrt{t}} = \sqrt{\gamma R}\right)$$

#### WANTED!

- low molecular weight
- few degrees of freedom
- non-explosive
- non-inflammable
- non-toxic
- non-oxidizing
- affordable

| Property        | R          | γ    | $ ho_{standard}$ | $\sqrt{\gamma R}$ | $U_{\rm gas}$ | Problem    |
|-----------------|------------|------|------------------|-------------------|---------------|------------|
| Unit            | J / (kg K) | —    | kg∕m³            | m / (s √K)        | €/kg          | _          |
| H <sub>2</sub>  | 4124       | 1,41 | 0,08             | 76                |               | explosive  |
| Не              | 2077       | 1,67 | 0,17             | 59                | 20 65         |            |
| Ne              | 412        | 1,67 | 0,84             | 26                | > 60          |            |
| CH <sub>4</sub> | 517        | 1,17 | 0,67             | 25                |               | explosive  |
| NH <sub>3</sub> | 488        | 1,22 | 0,71             | 24                |               | toxic      |
| steam           | 460        | 1,24 | —                | 24                |               | generation |
| N <sub>2</sub>  | 303        | 1,37 | 1,14             | 20                | 0,13          |            |
| air             | 293        | 1,36 | 1,18             | 20                | ≈ 0           |            |
| Ar              | 211        | 1,68 | 1,64             | 19                |               |            |
| CO <sub>2</sub> | 189        | 1,19 | 1,83             | 15                |               |            |

CT RTC MAT COA

### He-N<sub>2</sub> blends

#### **Gas related costs**

Price U<sub>gas</sub> (€/kg) of He-N<sub>2</sub> blends linear in He mass concentration c





Page 16

**Oliver Stier** 

CT RTC MAT COA

### He-N<sub>2</sub> blends

#### **Gas related costs**

Non-linear relation between mass and volume (mole) concentrations

- *w* refers to mass flow rates
- mass fraction c preferred over volume fraction or (isobaric) volume flow ratio



#### **Electricity costs**

#### Gas related costs

Comparing powder and gas heating power costs

$$C_{\rm tot} = C_{\rm pwd} + C_{\rm gas} + C_{\rm elc} + C_{\rm eqp}$$

$$\frac{C_{\rm elc}}{C_{\rm pwd}} = \frac{U_{\rm elc}}{U_{\rm pwd}} \frac{t_{\rm run}}{t_{\rm on}} \frac{1 + HL}{w} \frac{T - T_{\rm amb}}{3600} c_p$$

$$\approx \frac{0.11 c_p}{U_{\rm pwd} w}$$

| $\approx \frac{2.5}{U_{\rm pwd}}$ | ≪ 1, for expensive powders ( $U_{pwd} \ge 100 \in /kg$ ) |
|-----------------------------------|----------------------------------------------------------|
|-----------------------------------|----------------------------------------------------------|

#### **Generic cost function**

#### **Costs factors**

Simplified by neglecting electricity costs in case of expensive powders

$$C_{\text{tot}} \approx \frac{1+GL}{Y_{\text{DE}}} \left[ U_{\text{pwd}} + \frac{t_{\text{run}}}{t_{\text{on}}} \left( \frac{U_{\text{gas}}}{w} + \frac{U_{\text{eqp}}}{\dot{m}_{\text{pwd}}} \right) \right]$$
$$\frac{1+GL}{Y_{\text{DE}}} \left[ U_{\text{pwd}} + \frac{1}{w} \frac{t_{\text{run}}}{t_{\text{on}}} \left( U_{\text{gas}} + \frac{1}{\dot{m}_{\text{gas}}} U_{\text{eqp}} \right) \right]$$
$$\frac{1+GL}{Y_{\text{DE}}} \left[ U_{\text{pwd}} + \frac{1}{w} \left( 1 + \frac{t_{\text{off}}}{t_{\text{on}}} \right) \left( U_{\text{gas}} + F_{\text{gas}} \frac{\sqrt{T}}{A_{\text{thr}} P} U_{\text{eqp}} \right) \right]$$

### Gas flow rate depends on composition

#### **Costs factors**



### Cost factors of cold spray

#### **Costs factors**

(neglecting electricity costs in case of expensive powders)

$$C_{\text{tot}} \approx \frac{1+GL}{Y_{\text{DE}}} \left[ U_{\text{pwd}} + \frac{1}{w} \left( 1 + \frac{t_{\text{off}}}{t_{\text{on}}} \right) \left( U_{\text{gas}} + F_{\text{gas}} \frac{\sqrt{T}}{A_{\text{thr}} P} U_{\text{eqp}} \right) \right]$$

- application specific process parameters GL and  $t_{off}$
- flow parameters P, T, W
- propellant gas property  $F_{\rm gas}$
- particle bonding characteristic  $Y_{\text{DE}}$  (depends on *P*, *T*, *w*, *c*, nozzle shape)
- equipment parameter  $A_{\rm thr}$

Page 21

### **Deposition efficiency**

#### **Costs factors**

Empirical relation between  $Y_{\rm DE}$  and particle impact velocity  $v_3$ 



Ref. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann et al., JTST 20, 1161 (2011).
H. Assadi, H. Richter, F. Gärtner, T. Schmidt, J.O. Kliemann, K. Binder, T. Klassen,
H. Kreye, Application of parameter selection maps in cold spraying, ITSC-2011.

Page 22

Oliver Stier

CT RTC MAT COA

### **Deposition efficiency**

#### **Costs factors**



Model: H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann et al., JTST 20, 1161 (2011).
H. Assadi, H. Richter, F. Gärtner, T. Schmidt, J.O. Kliemann, K. Binder, T. Klassen,
H. Kreye, Application of parameter selection maps in cold spraying, ITSC-2011.

Page 23

Oliver Stier

CT RTC MAT COA

### Advantage of high stagnation pressure

#### **Costs factors**

Acceleration force on particles proportional to  $\rho_{gas}(v_{gas} - v_p)|v_{gas} - v_p|$ 

- $v_{\text{gas}}$  originates from T
- $v_{\text{gas}}$  independent of P
- $\rho_{\rm gas}$  proportional to P
- higher *M* increase  $v_{gas}$  and decrease  $\rho_{gas}$

Existence of optimal nozzle Mach number *M* (given gas and powder)

```
Higher P

\Rightarrow improved particle acceleration

\Rightarrow higher Y_{DE} (below erosion T)

\Rightarrow lower C_{tot}
```

### Economic use of cold spray

### **Cost optimization**

General recommendations

$$C_{\text{tot}} \approx \frac{1+GL}{Y_{\text{DE}}} \left[ U_{\text{pwd}} + \frac{1}{w} \left( 1 + \frac{t_{\text{off}}}{t_{\text{on}}} \right) \left( U_{\text{gas}} + F_{\text{gas}} \frac{\sqrt{T}}{A_{\text{thr}} P} U_{\text{eqp}} \right) \right]$$

- *GL*,  $t_{off}$ : Minimize by accurate contour tracking and fast work piece changing
- $Y_{\text{DE}}$  (*M*, *P*, *T*, *w*, *c*): Maximize by
  - using nozzle with optimal M
  - setting *P* as high as possible
  - setting T as high as necessary
- If necessary, limit powder feeding rate by  $A_{\text{thr}}$ , rather than by P

Page 25

CT RTC MAT COA

### Costs of cold sprayed MCrAIY

### Cost optimization

### Case study

$$C_{\rm tot}(c,w) \approx \frac{1+GL}{Y_{\rm DE}(c,w)} \left[ U_{\rm pwd} + \frac{t_{\rm run}}{t_{\rm on}} \left( \frac{c \ U_{\rm He}}{w} + \frac{U_{\rm eqp}}{\dot{m}_{\rm pwd}} \right) \right]$$

fixed parameters

- *Y*<sub>DE</sub> (*M*, *P*, *T*, *w*, *c*) assuming
  - measured properties  $\mu(d_p)$ , ... of proprietary MCrAIY powder
    - $V_{\rm crit}(d_{\rm p}, t_{\rm p})$  empirical black-box function
  - commercial nozzle: M(c)
  - commercial system at maximum pressure P
    - and necessary temperature T
  - $v_3(c, w, d_p)$  particle impact velocity model

CT RTC MAT COA

### **Costs of cold sprayed MCrAIY**

### **Cost optimization**



### **Costs of cold sprayed MCrAIY**

#### **Cost optimization**



### Cold spray of gas turbine blade bond coating

### **Application example**

Specific requirements:

- Geometric and motion parameters (stand-off distance, spray angle, traversing speed, track pitch) and their tolerances are usually optimized using planar or cylindrical samples
- Turbine blade surface areas to be coated are topologically homeomorphic to cylinders or half spheres, but not geometrically conformal
- Translation of motion parameters requires differential geometry computation based on CAD model of turbine blade
- Small curvature radii lead to rapid rotations around some robot axes

Page 29

**Oliver Stier** 

CT RTC MAT COA

### Complete blade and platform in one run

### **Application example**

### Spray tracks arranged as circumferential geodesic parallel curves



### Low geometric loss and open cooling duct

### **Application example**



### Adaptive spray angle

### **Application example**



### Cold spray coated gas turbine blade

### **Application example**

### Horizontal stripes are texture, not undulation



Page 33

30 Oct 2012

**Oliver Stier** 

CT RTC MAT COA

### Cold spray coated gas turbine blade

### **Application example**

CS of Amperit<sup>™</sup> 429.090 on Inconel<sup>™</sup> 792 gas turbine blade

- No masking, no surface preparation
- *GL* limited to 15%, even for small blades
- Cooling ducts at trailing edge remain open
- Homogeneous coating thickness
- Adhesion strength >60 MPa
- Roughness  $R_a = 17 \mu m$  suited to TBC deposition

Page 34

### Conclusions

- Generic cost function applies to all
  - present types of CS systems ("HP", "LP", KM™, "kinetic spraying", etc.)
  - relevant kinds of application (coating, restoration, additive manufacturing) and is useful for cost estimation and optimization
- High pressure is generally favorable
- He-N<sub>2</sub> blends possess highest commercial potential
- He recovery saves costs in high volume production, even with He-N<sub>2</sub> blends
- CS particularly suited to gas turbine blade bond coatings, offers cost savings