

Cold Spray Action Team (CSAT) Meeting

May 17, 2011 Worcester, MA

Everything fails... but that can't be predicted with FEA modeling alone

1 year and \$14 million test data point

Physical Testing for Every Possible Operating Situation is Not Practical

- Although 10,000 -100,000 units produced, often less than 10 test data points
 - Although each unit planned for 10,000 operating hours, testing often limited to 100 hrs
- Although unit use tested one way, actual in-service is something completely different
- Unit pre-production sales qualification one plant, while volume production another

Our Technology Extends FEA To Simulate Testing & Predict Durability Virtually

Probability of Failure & Why

Embedded demo shows how our VLM technology works

Flight Control Pad

- Durability simulation of UH60 Control Pad
- Part cast w/ Ze41A (Magnesium) material
- VEXTEC to simulate application of 6061(He) spray repair
- VEXTEC to compare with simulation results for uncoated part
- Rig test performed on uncoated part but not coated part as of yet

VLMTM Configuration & Checkout

VLM integrates 3-D material representation within each element of FEA. When cycled virtually, VLM predicts part durability

Design Configuration

ANS

NOV 10 2010 10:31:3:

Specimen FEA

- **RR Moore specimens**
- **Unit load applied**
- Modeled as parent material with coating
- Crack starts in AI and grows into Mg

NODAL BOLUTION STEP-1 SUB =1 TIME-1 SX (AVG) RSYS=0 DMX =.247E-03 SMN =-2547 SMX =974.088

Material Considerations

10

6061-He Material: Simulation of Damage Initiation

Damage Mechanisms:

- Multiple crack origin site (intergranular initiation).
- Short crack growth is also intergranular.
- Crack branching observed in multiple cracks at the coating- substrate interface.
- Primary crack continues to grow into substrate.

6061-He Material: Simulation of Damage Growth

Damage Mechanisms :

- Modeled based on fracture surface observations
- Long crack growth in
 magnesium (hexagonal close
 packing) crystal structure is via
 cleavage on the basal plane –
 cleaved grains show distinct
 grain facets

Simulation Material Configurations

Simulation Modeling	6061-He		Baseline Mg (no coating)	
Parameter	Nominal Value	Coefficient of Variation	Nominal Value	Coefficient of Variation
Shear Modulus	3770 ksi		2461 ksi	
Poisson's Ratio	0.32		0.31	
Fracture Toughness (K _{IC})	21 ksi √in		14 ksi √in	
Defect Size	6.3 μ	COV=26% (Log-	N/A	N/A
Defect Density	31100/sq. in	COV=19% (Log-	N/A	N/A
Small crack coefficient 'c'	0.002		0.01	
Long crack coefficient 'C'	2.54E-08	COV=54% (Normal)	2.54E-08	COV=54% (Normal)
Long crack exponent 'n'	3.9		3.9	
Nucleation mechanism	Intergranular in coating		Transgranular	
Grain size (coating)	14.0 μ	COV=19% (Normal)	72.0 μ	COV=33% (Normal)
Sp. Fracture Energy	420 lb-in/in ²		290 lb-in/in ²	
Short Crack growth	Intergranular in coating		Transgranular	
Grain Boundary Strength	0.44 ksi √in		0.55 ksi √in	
Frictional Strength	22 ksi	COV=16% (Weibull)	19 ksi	COV=14% (Weibull)

Simulator Calibration & Checkout

Simulator Calibration based on RR Moore Specimen Testing

- Operational speed 10,000 RPM
- Rotating bend R ratio = -1
- > Ambient temperature
- Data acquired at several stress levels

Virtual Simulation of <u>Uncoated</u> Specimen Tests

Simulated 600 RR Moore Specimens (12 Stress Levels, 50 Simulations Per Stress Level)

VLM results match Army testing without any further setup adjustments

Virtual Simulation of <u>Coated</u> (6061-He) Specimen Tests

Simulated 600 RR Moore Specimens (12 Stress Levels, 50 Simulations Per Stress Level)

VLM results match Army testing without any further setup adjustments

In the Time & Cost to Build & Test <u>One</u> Design Change, a Virtual Twin[™] Evaluates Many

Next Steps -

- Given that Simulator is now operational, VEXTEC can exercise it to benefit Army & Sikorsky program needs
- Simulation of uncoated vs coated control pad
- Potential simulation trade-studies
 - Spray velocity variation
 - Spray angle variation
 - Repair depth variation
 - Spray particle variation
 - Loading or mission scenarios
 - Etc.