

Laser Assisted Cold Spray of Titanium

A. Birt, V. Champagne, R. Sisson, D. Apelian, J. Dallaraosa

6/24/2015

Laser Assisted Cold Spray

- Titanium
- Experimental LACS
- Conclusions

Laser Assisted Cold Spray Setup

Process Context of LACS

- Powder
- Solid state
- Compressive residuals
- Metals, Polymers, MMC
 - Limited oxidation
 - Thermal and Kinetic Energy Mode Control

Process Capabilities of LACS

Process Effects of LACS

Laser Assisted Cold Spray

- Titanium
- Experimental LACS
- Conclusions

Material Selection: Ti-6AI-4V

from 650°C

е

$$\begin{aligned} & \frac{dT}{dt} = \frac{6h}{\rho * C_p * D} * (T_s - T_\infty) \\ & \frac{dT}{dt} = 2 * 10^5 \ K/s \end{aligned}$$

Ti-Al-V Alloys Composition: Ti-6.0% Al - 4.0% V Solution annealed at 1020°C (1868°F), and quenched directly to reaction temperatures

-Vander Voort Atlas of Time-Temperature Diagrams for Nonferrous Alloys -ASM Atlas of Microstructures

8

Ti-6Al-4V Plasma Atomized Powder

ES 7

Ti-6Al-4V Plasma Atomized Powder

Cold Sprayed Ti-6Al-4V: SEM

11

Cold Sprayed Ti-6Al-4V: TEM

Spray Direction

Cold Sprayed Ti-6Al-4V: Microstructure

70% He/30% N₂, 790 °C, 36 bar, 1 RPM

- Velocity of He **1.7x** more than N_2
 - Negligible Temperature Difference
 - Cost of He 30-**80x** more expensive than N_2
- Blue = broken a′
- Brown = moreworked a'
- Light = highlyworked a'

100% N₂, 750 ° C, 30 bar, 2.5 RPM

POLYTECHNIC Tur War War Car 1865 - N

Nitrogen Sprayed Hardness Map

10 % Porosity

He/N₂ Sprayed Hardness Map

<2 % Porosity

Result	Peak	Conversion	Sample Number
Porosity (%AF)	0.991	Min.Porosity Porosity	6
Microhardness (Hv)	398	Hardness Max Hardness	24

_ACS Response: S/N Results

Influence of ITP on $\boldsymbol{\chi}$

Influence of ITP on Microhardness

Influence of Parameters on Results

—PFR [1, 3, 5 RPM] — Raster [50, 100, 200, 400 mm/s] — Laser Power [50, 100, 300, 600, 1000 W]

Scaling Up Sample Size

Scaled Sample Temperature Profile

SAMPLE	PFR (RPM)	RASTER (MM/S)	POWER (W)	POROSITY (%AF)	CV	MICROHARDNESS (HV,200 GF,10S)	CV
101	5	50	300	4.62	0.38	387	0.05
102	1	400	300	0.81	0.17	313.6	0.26
103	1	50	600	10.92	0.13	461	0.57
104	5	400	1000	2.21	0.29	330.8	0.07

Alternative Methods to Lasing

- 12LCTi108X
- PFR = 1 RPM
- Raster = 400 mm/s
- Power = 600 W
- Laser Position: B/W
- Coating Thick: ~ 1 mm
- Porosity: 3.05%

- 12LCTi109X
- PFR = 1 RPM
- Raster = 400 mm/s
- Power = 300 W
- Laser Position: B/W
- Coating Thick: 3 mm
- Porosity: 0.86%

Alternative Methods to Lasing

Alternative Methods to Lasing

5.5 5 4.5 3.5 3 2.5 2 1.5 1 0.5

- 12LCTi108X
- PFR = 1 RPM
- Raster = 400 mm/s
- Power = 600 W
- Laser Position: B/W
- Coating Thick: ~ 1 mm
- Porosity: 3.05%

- 12LCTi109X
- PFR = 1 RPM
- Raster = 400 mm/s
- Power = 300 W
- Laser Position: B/W
- Coating Thick: 3 mm
- Porosity: 0.86%

Ti-6Al-4V Comparison

Laser in B/W at 600W

- Porosity: 3.05%
- Average Nanohardness: 4.63 GPa

Laser in B/W at 300W

- Porosity: 0.86%
- Average Nanohardness: 4.47 GPa

Cold Spray Pure Nitrogen

- Porosity: 10% (as low as 3% for some samples)
- Average Nanohardness: 2.1 GPa

Cold Spray Helium + Nitrogen

- Porosity: <2% (as low as 1% for some samples)
- Average Nanohardness: 5.07 GPa

LACS of Grade 1 CP Ti

CP Titanium on Steel

CP Titanium

Property	LACS (Nitrogen)	Cold Spray (Helium)	
Thickness	>2 mm	-	
Porosity	<0.5%	0.1-11%	
Bond Strength	>10000 psi	>10000 psi	
Hardness	189 Vickers, 91 Rb	150-320 Vickers	
Deposition Efficiency	88%	80-95%	
Deposition Rate	84.8 g/min	-	
Process Gas	Nitrogen	Helium	

• Laser Assisted Cold Spray

- Titanium
- Experimental LACS
- Conclusions

- 1. Framework and Baseline
- 2. Microstructural Control
- 3. LACS Nitrogen versus CS He Property Match
- 4. Different Materials
- 5. Novel Materials

Thank You

U.S. Army Research Laboratory Contract #: W911NF-10-2-0098