Methodologies to Interpret Properties of Sprayed Materials

Andrew Vackel, Gregory Smith, Brian Choi, Prof Toshio Nakamura, Prof. Sanjay Sampath CSAT June 23rd 2015

Center for Thermal Spray Research

AT STONY BROOK UNIVERSITY

Thermal and Cold Spray as Additive Manufacturing

Progression in Spray Forming Technologies

0.005

0.01

Strain

0.015

0.02

0.025 ny Brook

University

Thermal and Cold Spray as Additive Manufacturing

Early Uses for Repair

Timeline of Application Integration

1910 1930 1950 1970 1990 2010

Approximate time period noted and only exemplary applications are included

Progression of the Technology

Addressing the Efficacy of Spray Composites for Repair?

University

Elastic-Plastic Response via Indentation Stress Strain

Plastic Indentation Behavior

Process Comparing

Thermal Conductivity, Anisotropic Moduli

Residual Stress – A Hidden Variable

Curvature Based Stress Measurement

Deposition and Thermal Stresses

Assessing Load Recovery

- High Velocity Spray Repair Coatings
 - Produce dense, well adhered coatings with limited phase change in the feedstock material
- Peening mechanism during deposition
 - Compressive residual coating stresses
- Can it bear load?

- Hierarchy of Performance Need
 in Repair
 - Cosmetic
 - Dimensional Restoration
 - Structure Stabilization
 - Load Recovery

Tensile Behavior of Coated Composites

Nickel on Low Carbon Steel at 10% of composite thickness

Repairing of "Damaged" Structures

FEM Modeling

Edges and Groove Corners

Large stresses develop near the groove and may promote delamination of Ni coating under tensile loading for thick coat.

0.6mm thick

Max Princ. stress (MPa)

Structural Integration

Stony Brook University

Extracting Coating Properties

From the difference between coated and un-coated specimens

Effect of residual stress is included obtained by the curvature measurement → Compressive stress (-85MPa)

Load Transferring Mechanism

Additive Process Comparison

High Velocity Process Compare

Outline of Video Observation of Tensile Testing

Stony Brook University

Material ductility/brittleness impact on cracks

Thickness effect/processing on WCCoCr cracks

Nickel by Process – Impact on crack shape

Conclusion

- Expansion of Characterizations to Interpret the Properties and Behavior of Spray Composites
- Towards the full hierarchy of Reclamation and Repair
 - Cosmetic
 - Dimensional Restoration
 - Structure Stabilization
 - Load Recovery
 - Broader and Reliable
 implementation of High Velocity
 Thermal, Warm, and Cold Spray
 as Structurally Integrated
 Materials
 - Repairs/ Reclamations
 - Original Manufacturing

