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Thermal and Cold Spray as Additive Manufacturing

Historical and Present Uses

L Spray Forming J Coatings Reclamation

« Explored in the 80s and 90s

— Low Pressure Plasma Spray,
Range of Materials — Ceramics,
Intermetallics, Super alloys
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Progression in Spray Forming Technologies

Historical and Present Uses

[ Spray Forming ] Coatings Reclamation
* Presently there is a wider
Process Selection Cosiing I o
water |k Powder w(a)?c;':)&iu
— Cold Spray, HVAF, Warm Spray
. - Fuel i
« Opens up application i rine. <A ,_ >R,
possibilities previously e |
limited by processing e
limitations Kuroda, Watanabe, Kim, Katanoda JTST 2011
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Thermal and Cold Spray as Additive Manufacturing

Historical and Present Uses

Spray Forming

Wear and
Corrosion Protection

Thermal
Insulation

\ Coatings J

“Bread & Butter” i.e.
Conventional deployment of
the technology

Multiple Processes,
Materials, and applications

— Passive Protection for
Enhanced Performance (TBCs,
Wear and/or control protection,
EBCs)

Value adding or functional

materials

Function Specific
Characterization

Reclamation

Advanced oxides
For fuel cells

L

Bio-implants
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Early Uses for Repair

Historical and Present Uses

Spray Forming Coatings { Reclamation ]

* One of the earliest uses for
spray deposition (metalizing)

* New technology advances
(HVOF, HVAF, Warm Spray,
Cold Spray) open new
opportunities

« Hierarchy of Performance Need
In Repair
— Cosmetic
— Dimensional Restoration
— Structure Stabilization
— Load Recovery

« How do we address the
efficacy of such a composite?

Truck clutch plate in machine ready to be metallized with METCO Type K
Metallizing Machine.




Timeline of Application Integration
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Progression of the Technology

Dense, Compressive Stress

Thermal Energy

Oxides |

i” oer iNear Full Densityi

100um

Hierarchy of Performance Need
in Repair

Cosmetic

Dimensional Restoration
Structure Stabilization
Load Recovery
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Addressing the Efficacy of Spray Composites for Repair?

Adhesion

Microstructure =~ Bond Strength

Hardness %Porosity,

Composition

CuNB 20.8kV X3060.0 - \

What do these numbers
tell us?

What other information

can we use”? <
niversity




Elastic-Plastic Response via Indentation Stress Strain

}/‘F F P, =cY
B, =——
ma® Y ~26-29

Adhesion

Microstructure

Hardness

Elastic/Plastic
Response

Stress

* Minimal Specimen Preparation
» Multi-scale Capability

* Repeatable
» Observe subsurface physics

a
ESPHERICAL — O-Z[Ej

f Experimental

Strain
L. Prchlik. Mat. Sci. Eng. A. 360(2003) p. 264
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Plastic Indentation Behavior

—_—
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1000 | cs Ni-5 wt.% Al |

Indentation Stress (MPa)

CS Al-ll
0.2

0.05 0.1

Indentation Strain

CS Ni-5%Al
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Process Comparing

1600
o) Nickel (Army: He)
% Elastic/Plastic
;’1200 f Response
@ - Nickel Top (Hamburg: N,)
) Nickel Cross (Hamburg: N.,)
§ -ll-lllllll---‘.-
GC) TITOp --“‘|lllllll-‘--.-
S T1 Cross
= 400

0 ‘ ‘ ‘
0 0.02 0.04 0.06 0.08

Indentation Strain

 Cold spraying using He gas increasing coating strength (better Bonding!)

*No plastic anisotropy in Ni coating

4 *Plastic anisotropy in Ti coating Brook
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1




Thermal Conductivity, Anisotropic Moduli

1
Adhesion
0.75
: ~90%
Microstructure
0.5 -
Hardness 0.25 - ~45%
Elastic/Plastic 0 - . .

K-coating / K-Bulk

Response CSCu CS CuHT CS Ni CSTi
Measurements 1 —
= 08 1 ~60% of bulk in all cases = Cross —
m
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S04 -
(@]
Q
w 0.2 A
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Residual Stress — A Hidden Variable

16007 Ni+5%Al on stainless steel substrates
| 1400
Adhesion -
1200 -~
_ 1000 -+
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Property | aps o wire are Cotd Soray
Measurements
L/ Residual Spraying Method
Stress
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Curvature Based Stress Measurement
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0.10 | Stress evolution
during deposition
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Deposition and Thermal Stresses

o Cold Spray Aluminum on Al6061 Cold Spray Al on Steel
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Assessing Load Recovery

« High Velocity Spray Repair » Hierarchy of Performance Need
Coatings In Repair
— Produce dense, well adhered — Cosmetic
coatings with limited phase change — Dimensional Restoration

in the feedstock material — Structure Stabilization

* Peening mechanism during — Load Recovery
deposition

— Compressive residual coating
stresses

e Can it bear load?

° 0
: : . o e . ZZ oo OO:: Confinement
o
HVOF Nickel Coating — ‘3 o*0 ,
3 ° Sound barrier
-Dust collection

Nearly Full Density

Splat .
Strenc | 2. HVOF spray steel rcmf()rccmcnt;
' i

W

b‘."

I

‘ o - ;ﬁ Supersonic

100um \ lll Combustion Y\
sl i Torch :

Flame

; . rook
Rusted i1, Grit blast to A o 2 _— it
steel | white metal 3. TWA spray corrosion protection y




Tensile Behavior of Coated Composites

Extensometer

Nickel on Low Carbon Steel at
10% of composite thickness
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Repairing of “Damaged” Structures

14 -
O Coating
&° / Delamination
K X
12 - oV
o
l:: 250 um Coating Fill-in _ . ceem====== Coating Repair
b —.—--—- -‘———-_--' .
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__-——- _'(7,)
g b + 250Um Groove sesamnE ) %
3 8 renesnernte ---e""“ %
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o Virgin Sub- * 600
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FEM Modeling

Axial
stress (MPa)

15
FE simulation
10 | Y — e
. Ni filled specimen
é T Unfilled grooved specimen
-cg Increased load carried by Ni coat
S

0.10 0.15 0.20 0.25

deflection (mm)

0.05
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Edges and Groove Corners

Large stresses develop near the groove and may promote
delamination of Ni coating under tensile loading for thick coat.

0.6mm thick Max Princ.
stress (MPa)

480
400
320
240
160
80

large tensil
stress

q\\\\ Stony Brook

University



Structural Integration

12
—_"f —————————
10 ~
Z
X,
—c /
© g
@)
-l
6 Steel
— — =—  Steel + Coating
0.00 0.05 0.10 0.15 0.20

Extension [mm]

Additional load capability with added

Cross section

0.25

Stress [MPa]

200 -

180 ~ Steel

Steel + Coating

160 -

0.000 0.002 0.004 0.006 0.008 0.010

Strain

As a Structurally Integrated Repair, the

Coating can add strength to the

composite
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Extracting Coating Properties

From the difference between coated and un-coated specimens

600
500 | Estimated TS Ni Property Effect of re5|dgal stress is
: included obtained by the
400 | curvature measurement
: — Compressive stress (—-85MPa)

Ni coat on
annealed 1008 steel

stress (MPa)
w
o
o

N
o
o

annealed 1008 steel

100 [

0.0 0.5 1.0 1.5 2.0
strain (%)

E=121+5GPa
oo ~ 500MPa
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Load Transferring Mechanism

600
L Normally a brittle coating,
‘-E-‘ 400 With substrate: = ~ ~ - but combined with _
? residual strength ~ ~ a substrate offers benefit
0
»
% : l. Elastic response
g 200 | : |l. Damage initiation & progression
=
®

[1I. Discontinuous failure

Damage Progression: boundary separation & void growth

v
Without substrate: sudden failure

0.0 0.5 1.0
strain (%)

Weakest Link will be exploited
-Inter-splat cohesion (Porosity,
Toughness, Ductility)
-Adhesion (Bonding, substrate
Preparation, Stresses)

_- TS Ni coat

load transfer Steel s.ubstrates/l$




Additive Process Comparison

| Al Arc Spray p. Al Cold Spray

20 1 300

18 -
] 250
_ T
Z 16
X =
o) — Al 6061 0 200 —_— Al 6061
g | = Al 6061 + Al Arc Spray $ - Al 6061 + Al Arc Spray
O 14 1 ——— Al 6061 + Al Cold Spray = = Al 6061 + Al Cold Spray
] 7p]
] 150 A
12
10 : : : : 100 : : . .
0.0 0.1 0.2 0.3 0.4 0.5 0.000 0.002 0.004 0.006 Special Thanks
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High Velocity Process Compare

HVAF Ni | I HVOF LF Ni |w W= | HvoF LiGF Nlm

e AN 50um e gl | SOum

Stress [MPa]

180 ] —— Annealed Steel
—— w/ Cold Spray (N,) Ni

w/ HVOF G/LF Ni

1 —— W/ HVAF Ni
160 7 ——— W/ HVOF LF Ni
T T T T T T T T T T T T T T T T T T
0.000 0.005 0.010 0.015 0.020

. Special Thanks to
Strain VTT and CNRC




Outline of Video Observation of Tensile Testing

200
Cracking e
400 - — T f
eE '
E . UTS
300 - Strain hardening of substrate
iy 200 =
7]
=
%)
100 4 Elastic
0 I / I I I I I
0.0 0.2 0.4 06 08 1.0 12
Strain

Opticaf500x - =~ 4
EopRsection T

Energy in coating is constantly
increasing

There needs to be mechanisms to
release and distribute that energy

N

e Cracking
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Material ductility/brittleness impact on cracks

HVOF WC-CoCr
HVOF T800

HVOF (CJS)Ni

In general:
Coating material ductility increasing

Crack propagation changes from brittle,
rapid failure to a more tumultuous smearing

Related to energy and stress buildup and
dissipation

y \5
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Thickness effect/processing on WCCoCr cracks

Ordered by thickness

500

wol  T191-T194

300 4

Near identical stress-strain plot

0.2

0.0 0.4 0.6 0.8 1.0 1.2

Strain

In general:

Change from “popcorn”
structure to more horizontal
cracks, as a function of
thickness increase

More coating thickness results in more energy
and stress in the coating, which shifts release
from discrete points to higher energy full length

200 um
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Nickel by Process — Impact on crack shape

Tae e o

Liedld i -

————————————
201412111 1043 HL D59 500  200um

« R

s == Cold Spray Ni (N,)

ndrew_0017 20150310 1343 HL D54 x500 200um

Change from ductile smearing
to higher energy release
horizontal cracks

Relation to processing
conditions?

Lo 7on Thosmal S0y Fociiogs
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Adhesion

Microstructure

Hardness
Elastic/Plastic
Response
Property
Measurements
Residual
Stress

Tensile
Testing

Expansion of Characterizations to
Interpret the Properties and
Behavior of Spray Composites

Towards the full hierarchy of
Reclamation and Repair
Cosmetic

Dimensional Restoration
Structure Stabilization
Load Recovery

Broader and Reliable
Implementation of High Velocity
Thermal, Warm, and Cold Spray
as Structurally Integrated
Materials

Repairs/ Reclamations
Original Manufacturing
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