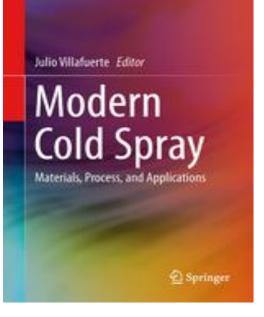


Using Cold Spray to Add Features to Components

Julio Villafuerte, PhD, P.Eng

June 23-24 2015



June 2015

www.supersonicspray.com

Practical Cold Spray Coatings

Coming this August 2015 Modern Cold Spray Materials, Process, and Applications

Editor: Villafuerte, Julio http://www.springer.com/us/book/9783319167718

June 2015

Practical Cold Spray Coatings

OUTLINE

Company Overview

Cold Spray

Additive Consolidation Applications

Food for thought

Questions

- Privately held corporation, founded in 1957 with current annual sales > \$150M
- Over 250,000 sq ft. of manufacturing space & 700 employees
- Centered on *metal joining* and *metal consolidating* technologies from components to turnkey solutions
- Numerous patented products and proprietary brand products.

centerline

centerine Components to Turnkey

✓ Vertically integrated

 Uniquely supplies a complete range of products in support of a wide variety of metal joining and coating processes.

Standard Turnkey Automation Products

Actuators - Air, Air/oil, and servo

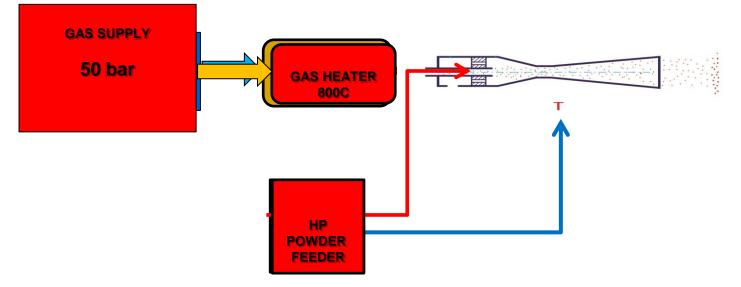
Custom Automation Systems

Index Tables, Tooling & Fixtures

Consumables caps, electrodes, nut welding

Weldguns (fixture, robotics, hand-held)

Cold Spray Systems


June 2015

Gg,

Commercial Cold Spray Systems

UPSTREAM INJECTION

DOWNSTREAM INJECTION

June 2015

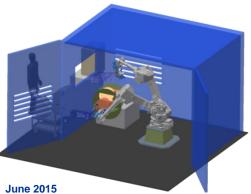
éenterline-

SST Cold Spray Guns

SERIES P Robotic 250 psi - 4.2KW SERIES EP Robotic 500 psi – 15 KW

SERIES P Portable 250 psi – 3.8KW

éenterline-



SST Turnkey Spray Cabinets / Booths

¢enterline-

www.supersonicspray.com

Practical Cold Spray Coatings

© 2015, CenterLine (Windsor) Limited

centerine SST Cold Spray Consumables & Auxiliary

Consumables

June 2015

www.supersonicspray.com

Practical Cold Spray Coatings

© 2015, CenterLine (Windsor) Limited

SST™ Powders

- Developed and manufactured by SST
- Made and stored in our environmentally controlled clean room

OUTLINE

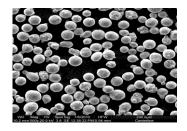
Company Overview

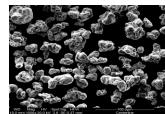
Cold Spray

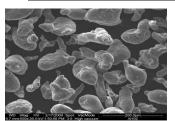
Additive Consolidation Applications

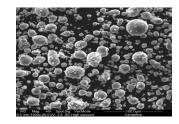
Food for thought

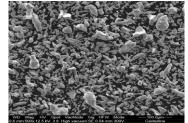
Questions

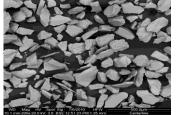


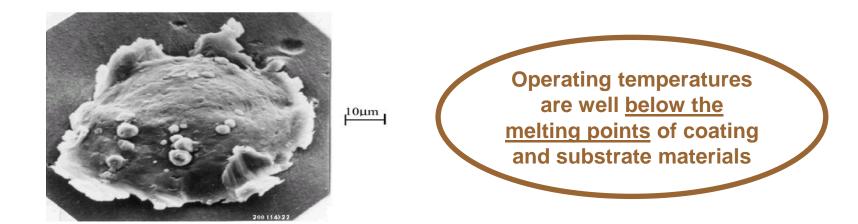

www.supersonicspray.com




Cold Spray


- POWDERS of Pure Metals, Alloys, Metal /Metal, Metal /Ceramic, Metal/Cermet, Metal /Polymers
- Introduced into a cold, high speed gas jet and directed towards a substrate that can be Metal, Ceramic, Glass, Polymeric* or Composite




June 2015

Practical Cold Spray Coatings

Cold Spray

• Kinetic energy of accelerated particles produces a combination of mechanical and metallurgical bonding upon impact with substrate

- No Thermal Effects
- No Metallurgical transformations, phase change, grain growth
- No thermally induced distortion
- No Oxidation
- High Density (>99.5%) controlled porosity
- Strain hardening
- No detrimental Residual Stresses
- Thick deposits, free forms
- Minimum surface preparation
- Well defined spray footprint No overspray No masking

<u>enterline</u>

Company Overview

Cold Spray

Additive Metal Consolidation Applications

Food for thought

Questions

June 2015

www.supersonicspray.com

Cold Spray Specifications

MIL-STD-3021 w/CHANGE 2 <u>4 March 2015</u> SUPERSEDING MIL-STD-3021 w/CHANGE 1 13 July 2011

DEPARTMENT OF DEFENSE MANUFACTURING PROCESS STANDARD

MATERIALS DEPOSITION, COLD SPRAY

AMSC N/A

AREA MFFP

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

June 2015

centerline-

Practical Cold Spray Coatings

Cold Spray Specifications

Honeywell

- Honeywell Aerospace
 - Caterpillar Inc
 - GE Energy
 - Detroit Diesel
- Hamilton Sundstrand
- Sikorsky Aircraft Corporation

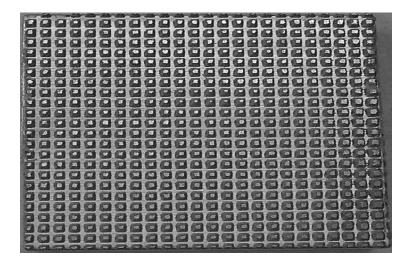
enterline-

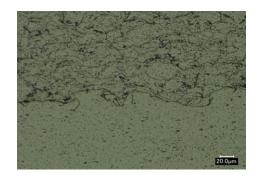
GE Energy

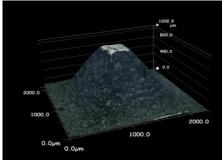
GE VIDEO "3D PAINTING" (https://www.youtube.com/watch?v=NXGOZ5ns3Zo)

Heat Exchanger Surface Features

L'Université canadienne Canada's university


Heated Gas Powder Feeder Spray Direction Wire mesh Substrate

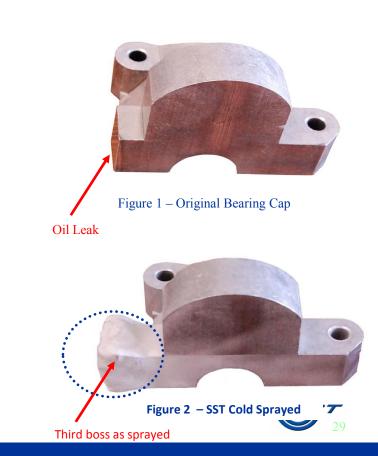



L'Université canadienne Canada's university

¢enterline-

L'Université canadienne Canada's university

Bearing Cap Modification


The Problem

Pre production Cam Shaft Bearing Cap.
Cap Lift of and Oil Leak (see Figure 1).
No thermal distortion to the component during the corrective process.

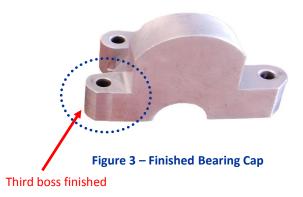
The Solution

The SST Cold Spray coating technology was selected.
 First surface prepared using 80 grit aluminum oxide blast media

≻Then sprayed with CenterLine's SST-A0027 aluminum blend material (see Figure 2).

Engineering Change

www.supersonicspray.com


Bearing Cap Modification

The FINISHING

≻Finish machining process was performed by CenterLine (see Figure 3).

Customer Benefits

final test components passed the customer's quality and performance specifications
The rapid turnaround time allowed the initial production schedule to be maintained
Saving the customer 8 to 10 weeks in their engine test program

Engineering Change

- ¢enterline-

Sensor Bosses on Engine Block

The Problem

Fully machined Engine blocks
Customer needed threaded bosses for Knock sensor testing (see Figure 1).
No thermal distortion to the component during the corrective process.

The Solution

The SST Cold Spray coating technology was selected.
 Then sprayed with CenterLine's SST-A0027 aluminum blend material in four locations (see Figure 2).

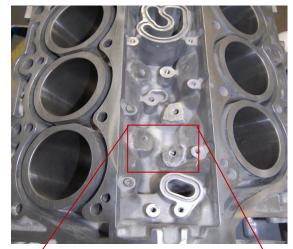
Added four bosses

Engineering Change

Figure 1 – Machined Engine block

Figure 2 – SST Cold Sprayed

-centerline-


Sensor Bosses on Engine Block

The FINISHING

≻Finish machining process was performed by CenterLine (see Figure 3).

Customer Benefits

➤ The customer has determined where the best location for the sensor is and will modify more blocks with the single boss for further testing. This process salvaged the machined blocks with minimal delay in the test program saving them Time and Thousands of dollars

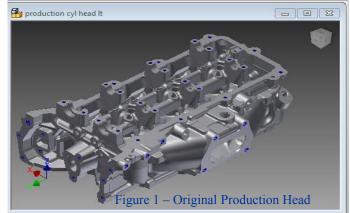
Engineering Change

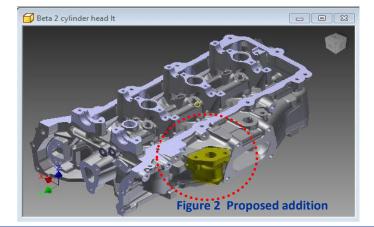
Figure 3 – Spot faced , drilled, & Tapped

EGR Boss Addition

The Problem

centerline-


Pre production Head .
Without EGR Boss Flange(see Figure 1).
Proposed EGR Flange addition (see Figure 2).
No thermal distortion to the component during the corrective process.


The Solution

The SST Cold Spray coating technology was selected.
 Then sprayed with CenterLine's SST-A0027 aluminum blend material

Build up Area and machine to math model

Engineering Change

EGR Boss Addition

Build up flange area

≻With a Manual Cold Spray Gun the Flange area was added (see Figure 3 & 4).

Figure 3 – Manual Build up of Area

Engineering Change

Figure 4 – Manual Build up of Area

Engineering Change

EGR Boss Addition

The FINISHING

Finish machining process was performed by CenterLine (see Figure 5 & 6).
Cross drilled and Taped for pipe plug

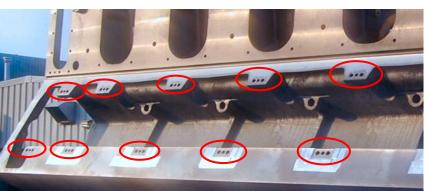
•••••

Customer Benefits

The use of an existing production part saved a lot of time and money to produce a prototype part

Cast Iron Engine Block Modification

The Problem


¢enterline-

- ≻Cam Shaft Mounting surfaces out of Spec by .015"
- ≻Block was fully machined

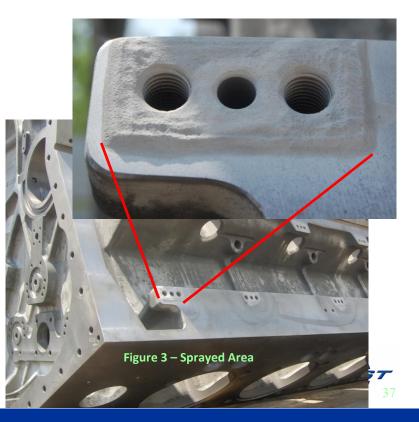
≻No thermal distortion to the component during the corrective process.

The Solution

The SST Cold Spray coating technology was selected.
Then sprayed with CenterLine's SST-N0056 Nickel blend material (see Figure 2).

Engineering Change

Figure 1 – Engine block


Figure 2 – SST Cold Sprayed

Cast Iron Engine Block Modification

Customer Benefits

The customer was extremely pleased with the final result of this application since the repair did not introduce component distortions, and the part could be finished using standard machining practices. (see Figure 3).

Engineering Change

June 2015

Practical Cold Spray Coatings

Company Overview

Cold Spray

Additive Metal Consolidation Applications

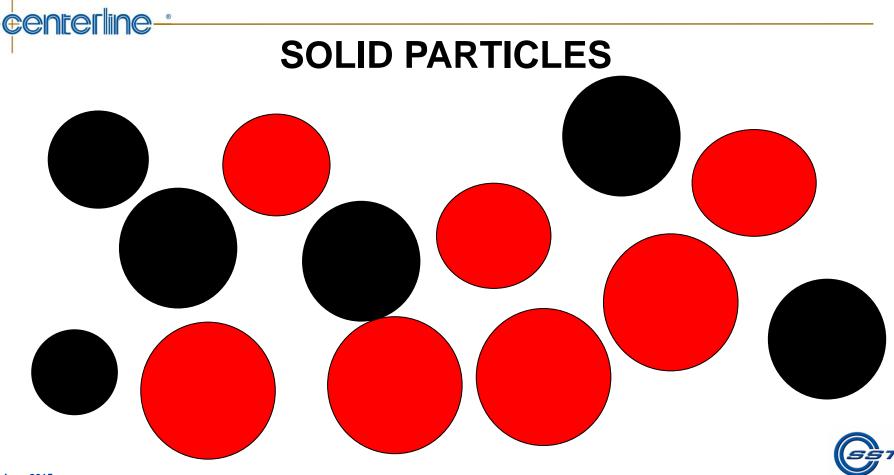
Food for thought

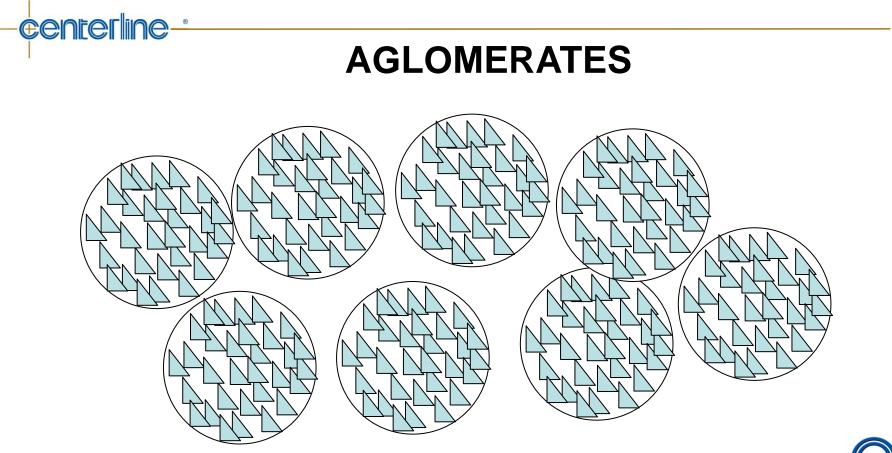
Questions

June 2015

www.supersonicspray.com

Cold Spray-ability and powder engineering

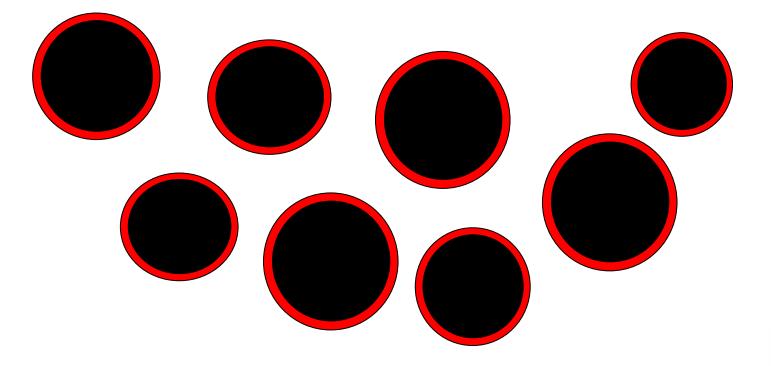


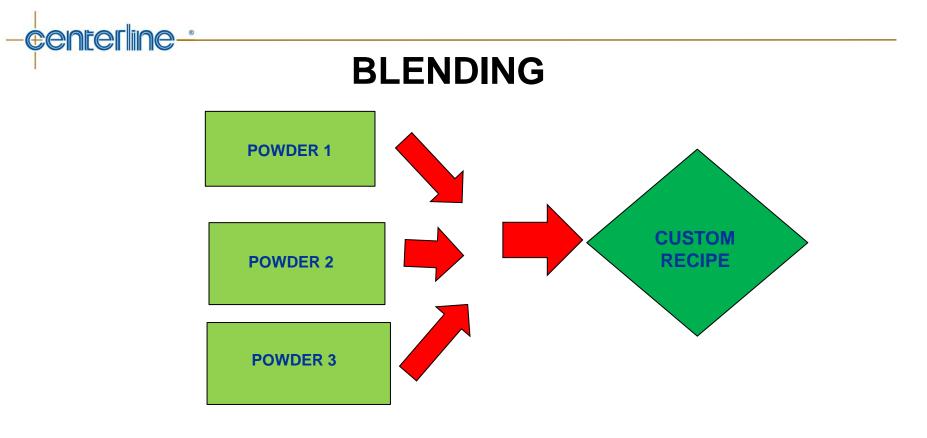

June 2015

www.supersonicspray.com

Practical Cold Spray Coatings

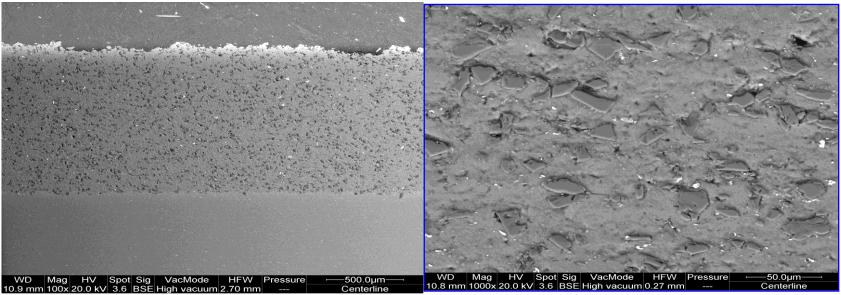
© 2015, CenterLine (Windsor) Limited



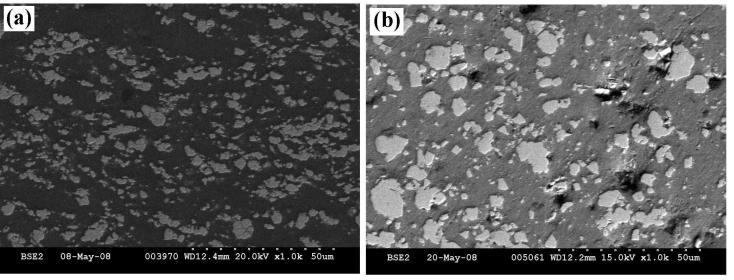


COATED PARTICLES

www.supersonicspray.com



AI-AI₂O₃ (SST A0050)

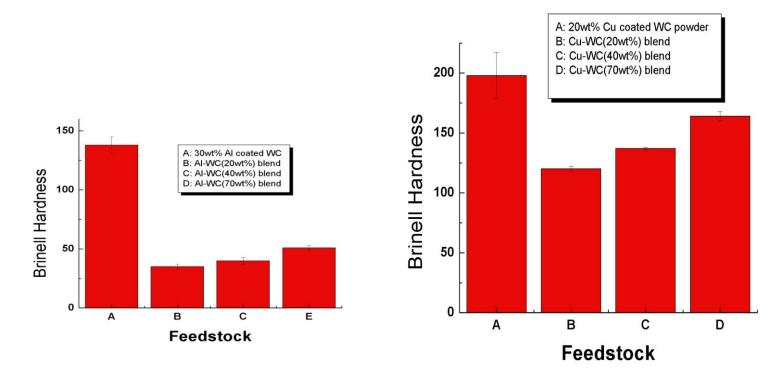

Compressed Air 95-110 psi Temperature 350 – 450C

Coated WC Particles

Compressed Air 80-90 psi Temperature 375 – 550C

Aluminum coated WC particles (14-25 micron)

Copper coated WC particles (14-25 micron)


J. Wang, J. Villafuerte, Low pressure cold spraying of tungsten carbide composite coatings", Adv. Mater. Process. ASM International 2009, 167 (2), pp 54-56

www.supersonicspray.com

June 2015

Practical Cold Spray Coatings

Coated WC vs Blends

éenterline-

How small is small for Cold Spray Nozzles? for precise deposition of metals

June 2015

www.supersonicspray.com

Practical Cold Spray Coatings

© 2015, CenterLine (Windsor) Limited

SST 4 mm exit diameter nozzle

> 1.5 mm DeLaval Orifice
> 4.0 mm Exit diameter

Summary

- Cold spray is another method for metal consolidation with a special appeal to additive manufacturing because of its low temperature application
- At its current state, cold spray may fit into the 3D additive restoration world to near shape forms, where a finishing machining operation is required to complete the task.

QUESTIONS?

Julio Villafuerte Ph.D., P.Eng. Corporate Technology Strategist

Wally Birtch Dipl. Aerospace Technology Senior Sales Engineer Cell: 519-890-1867 julio.villafuerte@cntrline.com

Cell: 248-217-1173 wally.birtch@cntrline.com

www.supersonicspray.com

CenterLine (Windsor) Limited Supersonic Spray Technologies 655 Morton Drive, Windsor, ON N9J 3T9 Telephone 519-734-8330

