

Worcester Polytechnic Institute

U.S. Army Research Laboratory Contract #W911NF-10-2-0098

Through-Process Modeling of Cold Spray

Danielle Belsito Cote, Baillie McNally,

Alison Garrett, Matthew Gleason, Robert DelSignore, Derek Tsaknopoulos, Caitlin Walde Victor Champagne, Jr., Richard D. Sisson, Jr.

Outline

- Project Motivation
- Project Approach
 - Models
 - Characterization
- •Summary

Materials Genome Initiative

"To discover, develop, and deploy new materials twice as fast..."

- President Obama, 2011

"The lengthy time frame for materials to move from discovery to market is due in part to the continued reliance of materials research and development programs on scientific intuition and trial and error experimentation. Much of the design and testing of materials is currently performed through time-consuming and repetitive experiment and characterization loops. Some of these experiments could potentially be performed virtually with powerful and accurate computational tools, but that level of accuracy in such simulations does not yet exist."

Materials Genome Initiative (2011)

Through-Process Model

Powder Significance

Additive Yield Strength Model

Function of: -

- Alloy composition,
- Powder particle size,
- T, t of heat treatment

Solid Solution Strengthening

$$\Delta \sigma_{ss} = \sum_{i} (G \varepsilon_s^{3/2} c^{1/2}) / 700$$

Substitutional Solid-Solution

Grain Size/Microstructural Influence

$$\Delta \sigma_{mic}(d) = k_{gs} \lambda^{-0.5}$$

Hall-Petch Behavior

Precipitation Strengthening

$$\Delta \sigma_{ppt} = \sum_{i} \left[\sigma_{Coherency, i} + \sigma_{Modulus, i} + \sigma_{Chemical, i} + \sigma_{Order, i} \right]$$

$$\Delta \sigma_{Coherency, i} = 7 \varepsilon_{coh, i}^{3/2} G \left(\frac{rf}{b} \right)^{1/2} \qquad \Delta \sigma_{Modulus, i} = 0.01 \varepsilon_{Gp, i}^{3/2} G \left(\frac{rf}{b} \right)^{1/2}$$

$$\Delta \sigma_{Chemical, i} = 2 \varepsilon_{Ch, i}^{3/2} G \left(\frac{rf}{b} \right)^{1/2} \qquad \Delta \sigma_{Order, i} = 0.7G \left[\varepsilon_{Ord, i}^{3/2} \left(\frac{rf}{b} \right)^{1/2} - 0.7 \right] \varepsilon_{Ord, i}$$

Modeling Approach

Thermodynamic, Kinetic, and Solidification Models

Powder Production

Thermodynamic & Solidification Models Characterization: SEM & EDS

Thermodynamic Modeling

OLYTEC

Thermodynamic Modeling

Thermodynamic Characterization – SEM/EDS

 $\sigma_{YS(d)} = \sigma_o + \Delta \sigma_{ss}(d) + \Delta \sigma_{mic}(d) + \Delta \sigma_{ppt}(d)$

Thermodynamic Characterization – EDS Map

Solidification Model

Heat Transfer Model Gas Atomization Process

Gas Atomization: Newtonian Heat Flow

- Heat transfer from droplet: forced convection
- Radiational cooling: neglected
- Heat conduction (w/in droplet): neglected (small size – Biot number < 0.1)

Heat balance,

$$-V \cdot \rho \cdot C_{p} \cdot \frac{dT_{d}}{dt} = h \cdot A \cdot (T_{d} - T_{f}) + \sigma \varepsilon \left(T_{d}^{4} - T_{f}^{4}\right)$$

$$h = \frac{k_{g}}{d} (2.0 + 0.6\sqrt{R_{e}} \cdot \sqrt[3]{P_{r}})^{2}$$

$$R_{e} = \frac{U \cdot \rho_{g} \cdot d}{\mu_{g}}$$

$$Pr = (C_{g}\mu_{g} / k_{g})$$

$$\left|\frac{dT_{d}}{dt}\right| = \frac{6}{\rho \cdot C_{p}} \cdot (T_{d} - T_{f}) \cdot (\frac{2.0k_{g}}{d^{2}} + 0.6\frac{k_{g}}{d}\sqrt{\frac{\rho_{g}\mathcal{B}}{\mu_{g}d}} \cdot \sqrt[3]{P_{r}})$$

$$\boxed{\left|\frac{dT_{d}}{dt}\right|} = \frac{12}{\rho \cdot C_{p}} \cdot (T_{d} - T_{f}) \cdot \frac{k_{g}}{d^{2}}$$

Thermophysical Properties of Al 6061 ¹								
Ar Atom	izing Gas	М	olten Drop	let				
T _f	K _g	ρ	Cp	T _d				
[K]	[W/(mK)]	[kg/m ³]	[J/(kgK)]	[K]				
300	1.79E-02	2380	1170	1473				

 $\sigma_{YS(d)} = \sigma_o + \Delta \sigma_{ss}(d) + \Delta \sigma_{mic}(d) + \Delta \sigma_{ppt}(d)$

Cooling Rate [°C/s]

Grain Size Characterization

Statistics over all grains - Separated / merged					
Global information	Value				
Number of grains	227				
Total area occupied by the grains	281 µm² (43.4%)				
Density of grains	0.351 Grains/µm²				
Grain parameters	Unit	Mean	Std dev		
Area	µm²	1.24	1.21		
Perimeter	nm	5277	3007		

Mountains[®] by Digital Surf

 $\sigma_{YS(d)} = \sigma_o + \Delta \sigma_{ss}(d) + \Delta \sigma_{mic}(d) + \Delta \sigma_{ppt}(d)$

Grain Size Variation with Alloy


```
\sigma_{YS(d)} = \sigma_o + \Delta \sigma_{ss}(d) + \Delta \sigma_{mic}(d) + \Delta \sigma_{ppt}(d)
```


Powder Processing

Kinetic Modeling: TTT, CCT Characterization: STEM

Kinetic Modeling Characterization: STEM

STEM DF Image, Scale Bar 500µm

Degassed 6061 Powder

AI 6061

Kinetic Modeling: CCT Diagram

Al 6061 Kinetic Diagrams

Quantification for Integration

Additive Yield Strength Model Characterization: Nanohardness

Additive Yield Strength Model

Function of:

- Alloy composition,
- Powder particle size,
- T, t of heat treatment

Solid Solution Strengthening

$$\Delta \sigma_{ss} = \sum_{i} (G \varepsilon_s^{3/2} c^{1/2}) / 700$$

Substitutional Solid-Solution

Grain Size/Microstructural Influence

$$\Delta \sigma_{mic}(d) = k_{gs} \lambda^{-0.5}$$

Hall-Petch Behavior

Precipitation Strengthening

$$\Delta \sigma_{ppt} = \sum_{i} \left[\sigma_{Coherency, i} + \sigma_{Modulus, i} + \sigma_{Chemical, i} + \sigma_{Order, i} \right]$$

$$\Delta \sigma_{Coherency, i} = 7 \varepsilon_{coh, i}^{3/2} G \left(\frac{rf}{b} \right)^{1/2} \qquad \Delta \sigma_{Modulus, i} = 0.01 \varepsilon_{Gp, i}^{3/2} G \left(\frac{rf}{b} \right)^{1/2}$$

$$\Delta \sigma_{Chemical, i} = 2 \varepsilon_{Ch, i}^{3/2} G \left(\frac{rf}{b} \right)^{1/2} \qquad \Delta \sigma_{Order, i} = 0.7G \left[\varepsilon_{Ord, i}^{3/2} \left(\frac{rf}{b} \right)^{1/2} - 0.7 \right] \varepsilon_{Ord, i}$$

Additive Hardness Model

WPI Overview

Acknowledgements:

<u>Contact email:</u> dbelsito@wpi.edu bamcnally@wpi.edu

Le Zhong MPAC Yongho Sohn