-ГJ Tampere University

Cold Spray Process Quality Assurance by Online Spray Monitoring

TSCF

Thermal Spray Center Finland

CSAT 2019 Jussi Larjo, Oseir Heli Koivuluoto, TAU

Oseir Ltd.

- Founded 1999
- Spin-off from TUT
 - Thermal spray diagnostic system dev project
 - Joint effort of Optics and Mat. Science laboratories
- Product lines
 - SprayWatch thermal spray sensors
 - HiWatch cold spray sensors
 - Other applications: PIV, pulp&paper, pharma, AM processes

HiWatch CS

ShotWatch

HiWatch HR2

Online monitoring for cold spray QA

• Extreme conditions

- High temperature
- Fast velocity
- Strong gradients
- Complex idnteractions
 - Models: 1D, Real world: 3D
- Restricted control
 - Mutually dependent parameters
- Repeatability
- Equipment condition
- Feedstock properties

Measurement basics

- Laser illuminated particle imaging
 - PTV, multi-streak detection
 - Sheet or backlight illumination
- Deliverables
 - Particle position
 - Particle velocity
 - Particle size

HW CS2: sheet measurement

- Simple and lightweight
- Particles detected by scattering
- Results:
 - velocity
 - position
 - size estimate
- Measurement area 8x5mm²
- 2MP, 50fps (GigE)

HW HR2: backlight measurement

- Particles detected by light extinction (shadow imaging)
- Results:
 - velocity
 - position
 - diameter
- Measurement area 8x5mm²
- 12MP, 15fps (USB3.1)

3-pulse illumintion: Sheet vs back

Particle imaging geometry

Spray

- Sheet imaging
 - Only narrow cross section of spray covered
 - Precise alignment of spray nozzle with imaging plane needed
 - Stable mounting, fixed measurement position
 - Spray position may not be consistent with nozzle axis
- Uncertainty in fixed position measurement

Analysis software

- Automatic image processing
 - No need for raw image storage
 - Builds particle data collection
 - Mean values
 - Distributions
 - Crossplots
 - History graphs
- HTML report production
 - CSV tables for individual particle data

Data gallery: distributions

velocity

position

diameter

Data gallery: crossplots with fit models

Diameter vs speed Linear fitline

Lateral position vs speed Quadratic fitline

Case 1. Powder QA

- Powder shelf life not specified
- Properties may change during extended storage
- Powder QA required

Al 6061: nominal diameter 10-40 μm

Case 1. Powder QA

HR2 sizing of the same powder lot

Feb 2019: D50 25 µm Mean velocity: 665 m/s Plume density: 69

Collected size data 100 10-5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0

Mar 2019: D50 33 µm Mean velocity: 617 m/s Plume density: 29

Jun 2019: D50 64 µm Mean velocity: 605 m/s Plume density: 27

Case 1. Powder QA

- Comparing SEM images of powders
 - agglomerates present after long storage
 - HR2 data suggests rapid change during one month
 - Coating yield 70% lower in latest deposition tests
- Periodic powder testing needed during long storage

Scanning plume mapping

- Sheet translation with triggered burst imaging
 - Sheet traverses the spray plume during image capture
 - Typical sequence (CS2 system):
 - 1 mm/s scan speed
 - HW CS2: 250 captures
 - Depth resolution: 0.02 mm
 - Capture time: ~10s
 - Analysis time: ~15s (CS2) / 1 min (HR2)
- 2D map of particle properties
 - Position uncertainty eliminated

Scan results: 8x8 mm² Al 6061, 35bar, 400C, top speed 800

• 2D map:

- Contour lines: Y velocity
- Colormap: particle density
- 550 images
- 1900 particles
- CS2 scan time 11 s

Case 2: Parametric variation

- Ti Powder
 - Diameter -45µm
 - 65bar
 - 1000C
- 2D map:
 - Contour lines: particle density
 - Colormap: Y velocity

Case 2: Parametric variation

Pressure at 55 bar

- Narrower high velocity zone
- Velocity drops at center axis

Case 2: Parametric variation

System restarted, p=70bar

- Highest pressure
- Particle density higher
 - No change in feed settings
- Velocity field annular
 - Low velocity values compared to lower pressure
- Unexpected result
 - Feed rate higher after restart?

Case 3: Time-resolved monitoring

- Ti -45µm, 70bar, 1000C
- Stationary free run
- Time resolved velocity and plume density
 - Unexpected burst: >6x density peak
 - Duration < 5s
 - Velocity almost constant

Case 3: Time-resolved monitoring

- SS 316, industrial setting
- Series of tests
 - Gradually lowering pressure
 - Spontaneous 4x increase of feed at 54 bar
 - Smaller deviation at 52 bar
 - Velocity dropped up to
 50 m/s from expected value

Case 3: Time-resolved monitoring

• Time history of pressure drop test

- Density anomaly is consistent during 54 bar setting
- Returns to normal during 52 bar test
- Feed issue

- 1. Set-up verification at test point
 - After system set-up changes / powder refill
 - Values within expected limits: Go/NoGo test
 - Sizing measurement: verify powder properties

2. Periodic verification at test point

- Every start-up, shutdown
- At given intervals
- Allows parameter adjustment for reaching operation setpoint

3. Simple closed-loop at test point

- At test point, perform automatic parameter adjustment
- Generate trendlines and limits: predict failure point
- Tradeoff: test frequency vs. efficiency

- 4. Continuous monitoring / closed-loop
- Fixed measurement at spraying point
- CS has slow adjustment response
 - interrupt operation to make corrections
- Only method to avoid issues from intermittent deviations from setpoint
- Current implementation: low pressure spray in production line
 - Limited to small diameter substrates

Future development:

- Mounting sensor to spray gun
 - Heavy system integration
 - Special optics needed to avoid interference with coating operation
- Yield prediction
 - Measured velocity/density/size maps
 - Combination with sticking models
 - Estimates of growth rate/DE/porosity

Thank you!

Dr. H. Koivuluoto acknowledges The Scientific Advisory Board For Defence (MATINE), Ministry of Defence for the funding of the cold spray research.

