

GfE Coating Materials Freiberg/Brand-Erbisdorf, Germany

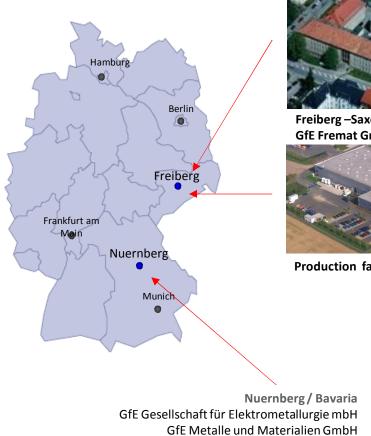
CSAT Meeting <u>Cold Spray Coatings on Hard Surfaces</u> <u>Other Commercial Applications</u>

June 18th, 2013

GfE Materials Technology Inc. Wayne, PA Cameron R. May

Selected R&D Results and Industrial Applications

Cameron May Dr. Steffen Marx Alexander Paul


GfE Fremat GmbH, Freiberg

Introduction

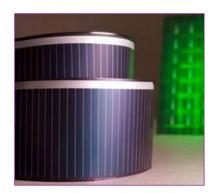
GfE Gesellschaft für Elektrometallurgie, Germany

Freiberg –Saxony R&D **GfE Fremat GmbH**

Production facility near Freiberg

- Diversified manufacturer of high performance metals and materials
- Scientific technical services
- € 85m (\$ 111 m) revenues in 2010
- 400 employees
- 1911 to 2011 100 year anniversary.
- Headquarter in Nuernberg with additional location in Freiberg
- Worldwide distribution network via sales partners

Business Fields


GfE Fremat GmbH

Coating Materials

Semi-finished Products

Coating Services

Cold Gas Spray R&D at GfE

Hard Substrates

(Al &Ti on Glass, Ceramics)

Applications:

Ti coatings on monolithic ceramic implants

Heating layers on glass

Electrical contact layers for glass photovoltaic modules or other thin film connectors

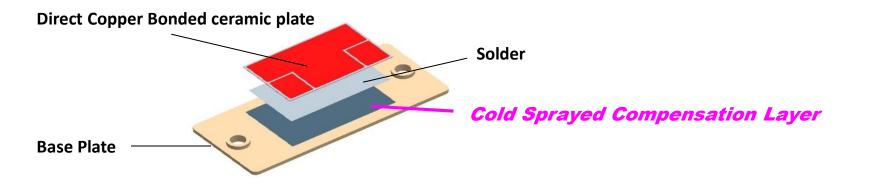
Power Electronics

Applications:

Conducting layers on power electronic heat sinks for

- 1. Compensation of CTE mismatch
- 2. Solderability + heat transfer

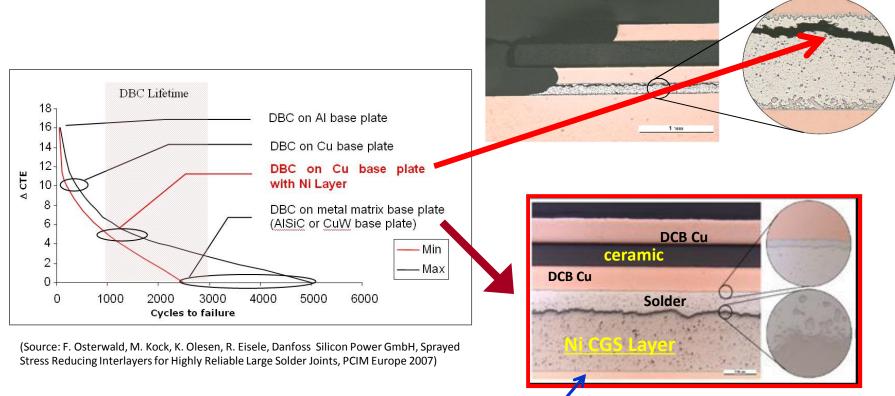
Structural Repair


Applications:

Dimensional restoration and structural repair of aerospace components (housings, fan cases,...), especially from Al or Mg alloys

Cold Sprayed Coatings for Power Electronics

Compensation of CTE Mismatch

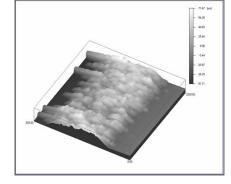


Applications include: Optoelectronics, Electric drives, Electric automotive drives

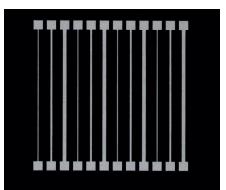
Demonstrator with 500 μm Ni intermediate layer

Power Electronics (cont'd)

Cu Base Plate

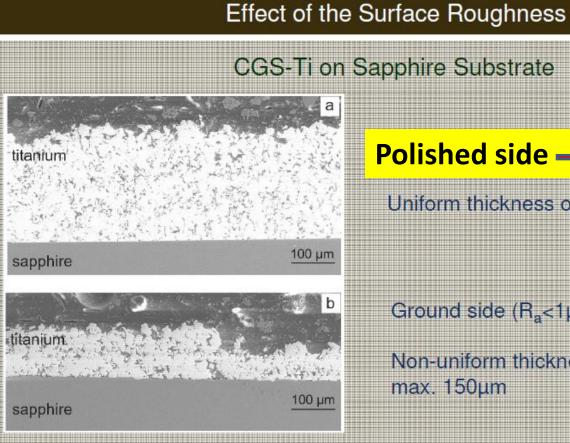

Cold Sprayed Coatings on Hard Substrates

CGS Al on Glass



Cold sprayed Al on glass

- Only thin layers
- 25 % of nominal electrical conductivity (without heat treatment)
- No reduction of conductivity after 200h Damp Heat Test
- High strength and bonding strength


Laser scan of a conductor line

Sample layout for measuring electrical conductivity (Al on float glass)

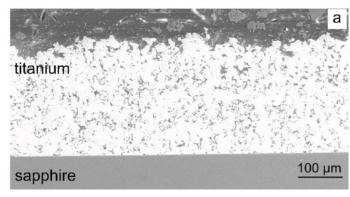
Cold Spray Coating on Hard Surfaces

CGS-Ti on Sapphire Substrate

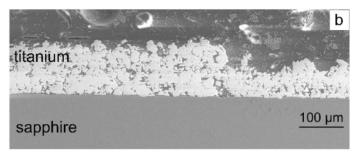
Polished side $\rightarrow R_a < 0.3$ nm

Uniform thickness of the coating of 250µm

Ground side (R_a<1µm)


Non-uniform thickness of the coating of max. 150µm

Much better adhesion on the polished substrate!!


Cold Sprayed Coatings on Hard Substrates

Effect of Surface Roughness

CGS-Ti on Sapphire Substrate

Polished side (R_a<0.3 <u>nm</u>) Uniform thickness of the coating of 250μm

Ground side (R_a<1 μm) Non-uniform thickness of the coating of max. 150μm

Better adhesion on the polished substrate

Cold Spray Coating on Hard Surfaces

Effect of the Surface Roughness

A 50 2 nm [211 [110] 114 112 006 112 114 10 1/nm 10 1/nm

CGS-Ti / Sapphire Interface (HRTEM)

Bonding mechanism between CGS titanium & polycrystalline sapphire:

Strong plastic deformation, especially at the sapphire surface

Deformation energy resulting from impact energy triggers recrystallization

Crystallites immediate to the polycrystalline surface show partial hetero-epitaxy due to energy of recrystallization.

Source: Microstructural characterisation of titanium coatings deposited using cold gas spraying on Al2O3 substrates, David Rafaja, Torsten Schuknecht, Volker Klemm, Alexander Paul, Harry Berek, Surface & Coating Technology 203 (2009) 3206-3213

Bonding Discussion

Dense titanium coatings with a good adhesion to sapphire (aka corundum, alumina, Al_2O_3) substrates were successfully deposited using cold gas spraying. The porosity of the coatings was approximately 10%.

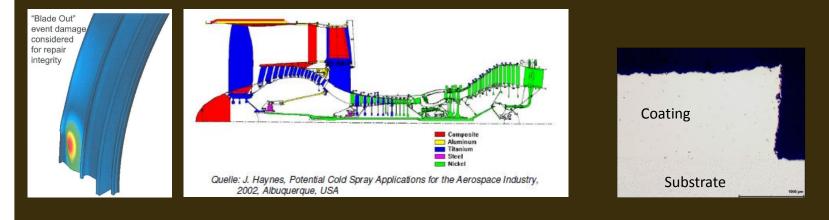
Severe plastic deformation of titanium particulates and elevated temperature at the Ti/sapphire interface, caused by the impact of titanium particles on the substrate, supplied additional energy promoting re-crystallization of titanium next to the surface of the sapphire substrate.

The re-crystallization of titanium supported re-organization of atoms, which is necessary for establishing the partial hetero-epitaxy between Ti and Al_2O_3 . The hetero-epitaxy between Ti and Al_2O_3 is regarded as a phenomenon that enhances the adhesion of Ti coatings to Al_2O_3 substrates.

Another consequence of the partial hetero-epitaxy at the Ti/Al₂O₃ interface and the re-crystallization of titanium was the nano-size of the Ti grains at the surface of the substrate.

As the formation of the partial hetero-epitaxy and the formation of the re-crystallized titanium decline with increasing distance from the Ti/Al₂O₃ interface, a gradient of increasing grain size was observed in the CGS Ti.

2. Selected R&D Results


Cold Sprayed Coatings for Structural Repair

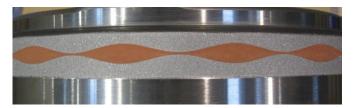
Development of Repair Technology

Fan Case Repair by Cold Spray of Al Alloys

- No remarkable heat transfer into the substrate material no softening
- Repair of very fine defined areas, coating thickness up to several mm
- Rapid process, simple surface preparation, excellent machinability
 - Full annealed cold sprayed Al alloys equal to plate material

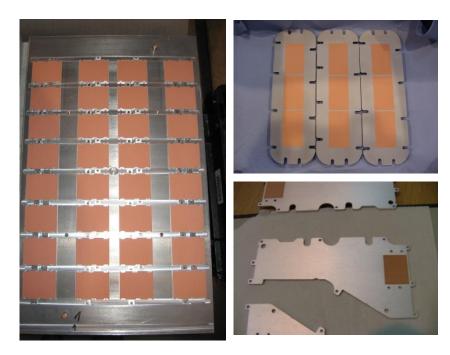
3. Examples of Inductrial Applications

Cu Coatings on Rollers and for Automotive Application


Cu coating as sprayed

- Cold sprayed Cu for engraved printing rolls
- Thickness up to several mm
- High bonding strength
- Low oxygen content
- Excellent machinability (turning, grinding, finishing)
- Engravebility comparable to electroplated Cu
- Very short production time

Cu coating finished



Cu Coating for Automotive Application

3. Examples of Inductrial Applications

Power Electronic Heat Sinks and Refrigeration Units

- Heat sinks for power electronic applications
- Cold sprayed Cu on Al surface
- High bonding strength
- Low oxygen content
- Very good solderability and heat conductivity

- Refrigeration vessels for apparatus engineering
- Cold sprayed Cu
- High bonding strength
- Low oxygen content
- Very good heat conductivity

3. Examples of Industrial Applications Pressure Ring

- Pressure ring for food processing machine
- Equalising and bonding layer for hardchromium top coating
- Cold sprayed Cu
- High bonding strength
- Low oxygen content
- Excellent machinability

4. Subjects for Development

Conclusions from Practical Experiences

- Long time spraying without interrupts
 - Nozzle plugging for good adhering powders as Inconel, Al, Ti
 - Agglomeration of powders with low oxygen content
- Improving of surface quality for electronic applications
- Powder feeding equability
- Control of powder mass flow
- Quality control of coated parts

Implementation of methods and equipment for control of coating and surface properties, dimensions...

