

Applied Research Laboratory The Pennsylvania State University

Finite Element Analysis of Cold Spray Particle Impact Cold Spray Action Team Meeting 6/22-6/23

Timothy Eden P:814.865.5880 email: <u>tje1@arl.psu.edu</u>

Jeremy Schreiber P:814.865.1096 email: jms5532@arl.psu.edu

Outline

- Effect of Quasi-steady state yield strength ("A" parameter) on the Cold Spray Model – Johnson-Cook model
 - Effect of A on a single particle size
 - Particle size impact using experimental data
- Particle Size Comparison
 - 20 micron
 - 200 micron
- Material Comparison
 - Al6061 on Al6061
 - Copper on Al606 I
- Effect of Particle Encapsulation on Deformation
 - Thick encapsulant coating
 - Experimental Validation with thin encapsulant

Material Properties (converted for Abaqus millimeter base unit usage)

Material	Density (tonnes/mm ³)	Young's Modulus (MPa)	Poisson's Ratio
Al6061	2.7x10 ⁻⁹	68900	0.3
Copper	8.9x10 ⁻⁹	115000	0.31
Nickel	8.88x10 ⁻⁹	207000	0.31

PENNSTATE

2500

Johnson-Cook Properties						
Material	Al6061	Copper	Nickel			
A	200 MPa baseline, varied	90	163			
В	203.4 MPa	292	648			
С	0.011	0.025	0.006			
n	0.35	0.31	0.33			
m	1.34	1.09	1.44			
Tm	925.37 K	1356 K	1726 K			

Tables of Consistent Units

Property	Unit System as classified by the ANSYS command /UNITS				
or Load	SI	CGS	MPA	BFT	BIN
Mass	[kg]	[g]	[tonne]	[slug]	$\frac{[lbf][sec]^2}{[in]}$
Length	[m]	[cm]	[mm]	[ft]	[in]
Time	[s]	[s]	[s]	[sec]	[sec]
Temperature	[K]	[K]	[K]	[°R]	[°R]
Velocity	[m] [s]	[cm] [s]	[mm] [s]	[ft] [sec]	[in] [sec]
Acceleration	$\frac{[m]}{[s]^2}$	$\frac{[cm]}{[s]^2}$	$\frac{[mm]}{[s]^2}$	$\frac{[ft]}{[sec]^2}$	$\frac{[in]}{[sec]^2}$
Force	[N]	[dyn]	[N]	[lbf]	[lbf]
Moment	[N][m]	[dyn][cm]	[N][mm]	[ft][lbf]	[in][1bf]
Pressure	[Pa]	[Ba]	[MPa]	$\frac{[lbf]}{[ft]^2}$	[psi]
Density	$\frac{[kg]}{[m]^3}$	$\frac{[g]}{[cm]^3}$	[tonne] [mm] ³	$\frac{[slug]}{[ft]^3}$	$\frac{[lbf][sec]^2 / [in]}{[in]^3}$
1 [cP] = 0.001 [Pa][s]					

 $\begin{array}{l} 1 \ [16] = 0.501 \ [16]$

Mesh Setup "A" Parameter Particle Element Amount: 9,861 Substrate Element Amount: 62,500 Mesh Type: CAX3 – 3 node linear axisymmetric triangle

PENNSTATE MATERIALS PROCESSING DIVISION

250

Applied Research Laboratory

Effect of "A" parameter on deformation – von Mises Stress

Effect of "A" parameter on model results WPI Experimental Data

Model Setup:

- Axisymmetric Construction
- Particle Diameter: 10-55 microns
- Particle: 6,000-10,000 CAX3 Linear Triangle Elements
- Substrate: ~60,000 CAX3 Linear Triangle Elements
- Particle Impact Velocity: 800 m/sec
- Particle Temperature: 500 K
- Substrate Temperature: 300 K
- Johnson-Cook "A" parameter varied using data supplied by WPI

PENNSTATE

Applied Research Laboratory

Effect of "A" parameter on model results – von Mises Stress WPI Experimental Data

PENN<u>STATE</u>

Applied Research Laboratory

Particle Size Comparison Al6061 on Al6061 at 500K von Mises Stress

Al6061 vs. Copper Particle Stress Comparison 200 micron particles

MATERIALS PROCESSING DIVISION

Applied Research Laboratory

Al6061 vs. Copper Particle Comparison

Step: Impact X Increment 0: Step Time = 0.0 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Effect of Encapsulation on Deformation

Model Setup:

- 20 µm Al6061 particle encapsulated with a 10 µm thick layer of nickel
- Particle velocity varied from 300-700 m/sec

MATERIALS PROCESSING DIVISION

Applied Research Laboratory

Effect of Encapsulation on Deformation von Mises Stress

300 m/sec

500 m/sec

600 m/sec

700 m/sec

Effect of Encapsulation on Deformation Experimental Comparison

Model Setup:

- 72 µm commercial purity aluminum particle encapsulated with a 7 µm thick layer of nickel
- Particle velocity: 800 m/sec

Effect of Encapsulation on Deformation Experimental Comparison

+3.657e+02 +1.872e+02 +8.678e+00

Single Particle Impact

Multi-Particle Impact

Cold Sprayed Nickel Encapsulated Aluminum

Effect of Encapsulation on Deformation Experimental Comparison

PENNSTATE

S STE

8 5 5

Summary

- Axisymmetric Model
 - Comparable with other research
- Investigated "A" parameter in the Johnson-Cook model
- Varied the particle impact velocity
- Analyzed the effect of particle size on impact
- Four material systems were analyzed
 - Al6061 on Al6061
 - Copper on Al6061
 - Al6061 Encapsulated with Nickel on Al6061
 - CP-AI Encapsulated with Nickel on CP-AI

Next Steps/Future Work

- Confirm model with experimental data
- Move from axisymmetric modeling to 3D modeling
- Implement new material models using subroutines
 - Zerilli-Armstrong
 - Preston-Tonks-Wallace
- Compare new models with LS-DYNA
- Include adiabatic heating effects and thermal expansion
- Develop a strain energy bonding parameter for particle adhesion