

Modeling of Particle Bonding in Cold Spray

S. Muftu¹, A. Gouldstone¹, M. Upmanyu¹, T. Ando¹, S. A. Alavian², A. Hulton², B. Yildirim²

> Northeastern University Department of Mechanical Engineering Boston, MA 02115

> > ²Former graduate students, ¹Professors

Acknowledgements

- The National Science Foundation, Grant number 1130027
- H.C. Stark, Inc. (Newton, MA)
- Plasma Giken, Co. Ltd. (Tokyo, Japan)

Muftu, Gouldstone, Upmanyu, Ando

Past work at NU related to modeling and simulations of Cold Spray particle impact phenomenon

- FE modeling approaches for CS (1, 5)
- Models of particle adhesion (1, 3 6)
- Assessment of interface energy (3, 4)
- Multi-particle impact and cohesion (5, 6)
- Effects of particle and substrate temperatures and effects of impact frequency (6)
- Molecular dynamics simulation of impact (in preparation)

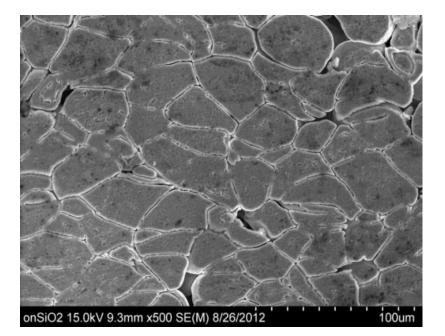
References

- B. Yildirim, S. Müftü, A. Gouldstone, "Modeling of High Velocity Impact of Spherical Particles," Wear, Vol. 270(9-10), pp. 703-713, 2011.
- 2. B. Yildirim, S. Müftü, "Impact of High Velocity Particles onto a Rough Surface," International Journal of Solids and Structures, Vol. 49, pp. 1375-1386, 2012.
- 3. Yildirim, H. Fukanuma, T. Ando, A. Gouldstone and S. Müftü, "A numerical investigation into cold spray bonding processes," Journal of Tribology, Vol. 137, No. 1, pp. 935-942, 2014.
- 4. S. Müftü, S. Zhalehpour, A. Gouldstone, and T. Ando, "Assessment of Interface Energy in High Velocity Particle Impacts" Proceedings of the 38th Annual Meeting, The Adhesion Society February 20-25, 2015, Savannah, GA
- 5. B. Yildirim, *Mechanistic modeling of high velocity micro-particle impacts: Application to material deposition by cold spray process*, PhD Thesis, Northeastern University, April 11, 2013
- 6. A. Hulton, *Investigation of the Effects of Particle Temperature and Spacing on Multiparticle Impacts in Cold Spray*, MS Thesis, Northeastern University, August 2013

Goals – initially morphology-based

Investigate the effects of

- Thermal state of the particles and the substrate, and
- Spatial and temporal spacing of the particles in multi-particle impacts in cold spray


Modeling Considerations

- Material model
- Gas-particle flow
- Time between impacts and thermal response of the impacted particle/substrate

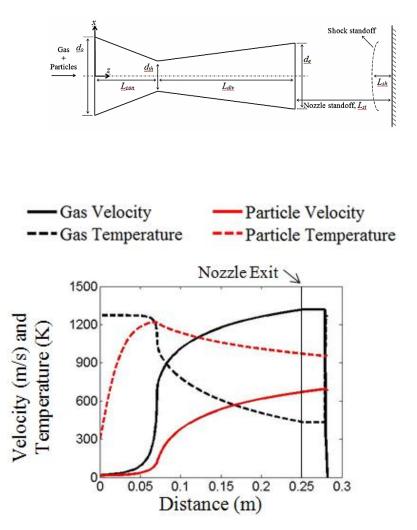
Synergistic Activities

- Experimental analysis of interfaces
- MD simulations

P. Fauchais and G. Montavon, "Thermal and cold spray: Recent developments," *Key Engineering Materials*, vol. 384, pp. 1-59, 2008.
 H. Assadi et al., "Bonding mechanism in cold gas spraying," *Acta Materialia*, vol. 51, pp. 4379-4394, 2003.

SEM image (Ali Alavian)

- Al particles on Al substrate
- 573 K gas inlet temperature


Muftu, Gouldstone, Upmanyu, Ando

Gas-Particle Interaction (for multi-particle impact)

- Provided with gas T (no inflight diagnostics)
- We developed our own 1D Code
- 1D particle-gas flow model [7]
 - o Isentropic
 - Compressible gas flow
 - Interactions between particles are neglected
- Determine particle velocity and temperature at impact

Par	Sub	Gas T (K)	Par V (m/s)	Par T (K)
Al	Al	773	677	602
Al	Al	673	632	525
Al	Al	573	581	449

[7] R. C. Dykhuizen and M. F. Smith, "Gas dynamic principles of cold spray," *Journal of Thermal Spray Technology*, vol. 7, pp. 205-212, 1998. [8] Results obtained via ParticleFlowSim

Muftu, Gouldstone, Upmanyu, Ando

Average time between impacts

 t_{ave} = (No. of impacting particles)/ (No. of Particles/unit time)

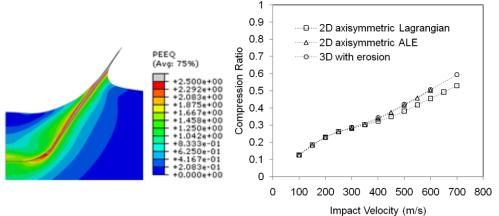
$$t_{ave} = \left(\frac{A_e}{A_d}\right) \left(\frac{m_p}{f_p}\right)$$

$$t_{ave} = \left(\frac{m_p}{f_p}\right) \left(\frac{A_e}{A_d}\right) = \frac{\frac{4}{3}\pi\rho_p \left(\frac{1}{2}d_p\right)^3}{f_p} \frac{A_e}{4\pi \left(\frac{1}{2}d_p\right)^2} = \frac{\rho_p d_p A_e}{6f_p}$$

- m_p : mass density of particles (mass/vol)
- d_p^r : diameter of particles (length)
- A_e^r : Nozzle exit area (area)
- f_p : Particle feed rate (mass/time)

t_{ave} ~ 100 ms estimated average time between impacts at the same position (no raster)

 m_p : 8900 kg/m3 d_p : 25 µm d_e : 6.5 mm f_p : 0.01 kg/s


o Johnson Cook plasticity model

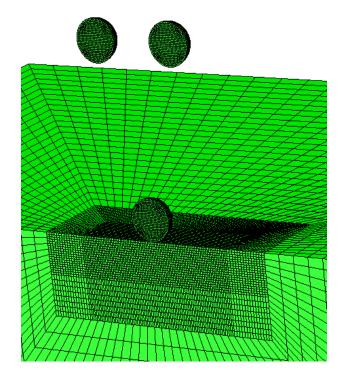
- o Temperature
- o Strain
- Strain rate
- Material constants A, B, C, n, m, and T_m
- Plastic work converted to heat
 - $\beta = 0.9$ (90% of strain energy is converted to heat)

Stress Based Cohesion Model Fraction of material yield stress

Oxide, impurities

- $\begin{aligned} \sigma_y(\varepsilon_{\mathbf{p}}, \dot{\varepsilon_{\mathbf{p}}}, T) &= \left[A + B(\varepsilon_{\mathbf{p}})^n\right] \left[1 + C\ln\left(\dot{\varepsilon_{\mathbf{p}}}^*\right)\right] \left[1 (T^*)^m\right] \\ \dot{\varepsilon_{\mathbf{p}}}^* &:= \frac{\dot{\varepsilon_{\mathbf{p}}}}{\varepsilon_{\mathbf{p}^0}} \quad \text{and} \quad T^* := \frac{(T T_0)}{(T_m T_0)} \end{aligned}$
- Shear material failure
 - Relationship between Johnson-Cook model and shear instability strain
 - Produces maximum plastic strain at which material fails
 - Equivalent plastic strain $\varepsilon_p = 2$

[5] An et al. "Mechanical Behavior of Solder Joints Under Dynamic Four Point Impact Bending ", Microelectronics Reliability 51 2011, 1011-1019

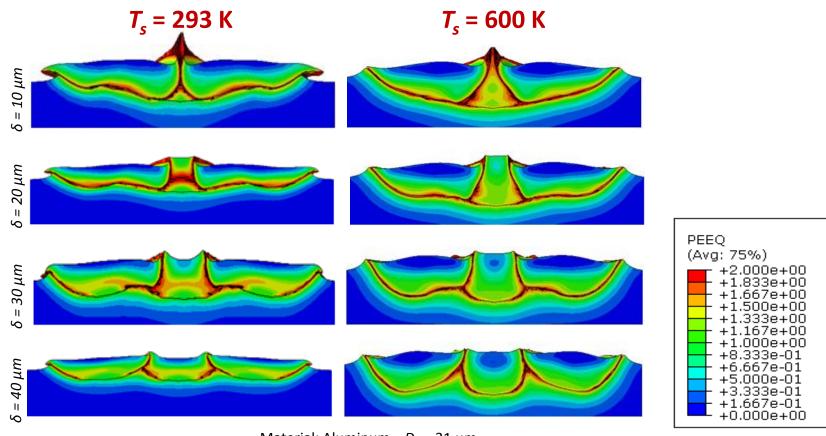

Muftu, Gouldstone, Upmanyu, Ando

Northeastern University

Typical Run

- Model input parameters
 - Particle velocity and temperature
 - Substrate temperature
 - Par/Sub material properties
 - <mark>ο</mark> Ε, ρ, ν, α, k

- o Symmetrical impact of 3 particles
- Horizontal spacing of impacts
- Substrate heating due to gas
- Particle impact frequency (flow-rate)



0

Ο

- Less initial particle deformation
 - More deformation in substrate
 - Softer material absorbs more energy

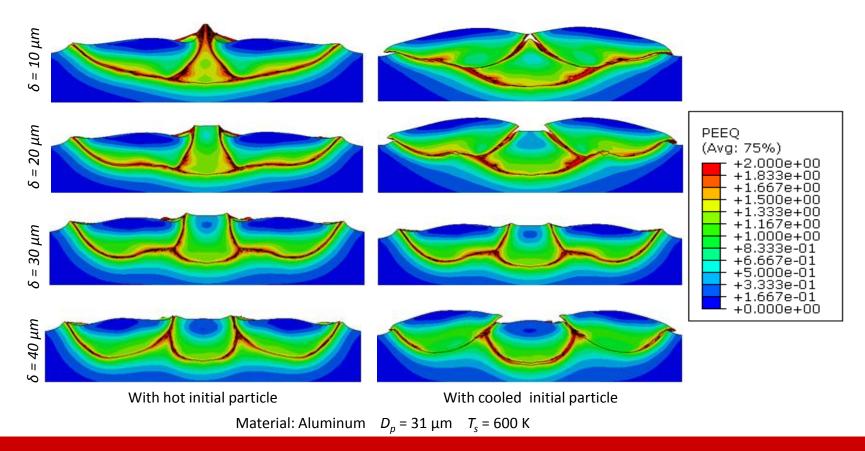
 $V_i^{(p)} = 677 \text{ m/s}, T_i^{(p)} = 602 \text{ K}$

Material: Aluminum $D_p = 31 \, \mu m$

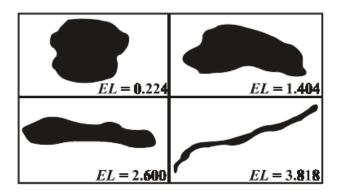
Effect of substrate temperature

results in higher T_{c}

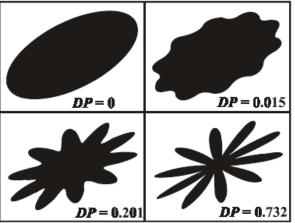
Accounting for substrate temperature


Impact frequency (mass flowrate)

Confidential. Do not distribute.

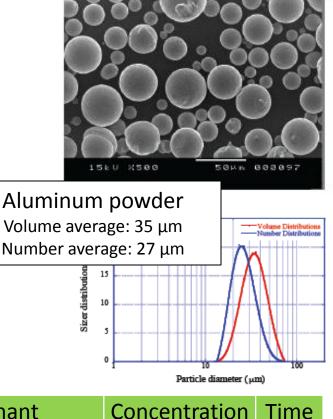

- Less deformation in the initial particle
 - o More pronounced for smaller δ

 $V_i^{(p)} = 677 \text{ m/s}, T_i^{(p)} = 602 \text{ K}, T_s = 600 \text{ K}$



- Axis Ratio
 - Max/Min of ellipse axes
- Eccentricity
 - Circularity of object
 - Circle=1 while line → ∞
- Equivalent Diameter
 - Diameter of circle with same area
- Orientation angle
 - Angle of major ellipse axis

- Perimeter
- Elongation
 - $EL = \log_2(a/b)$
 - a, b are ellipse major and minor axes
- Dispersion
 - DP = $\log_2(\pi ab)$
 - Ellipse=0 and increases with roughness
- Roundness
 - RN = $P^2/4\pi A$
 - Circle=1 while line→∞


MIKLI, V., KÄERDI, H., KULU, P., BESTERCI, M. Characterization of Powder Morphology. Proc. Estonian Acad. Sci. Eng., 2001, 7, 1, 22–34

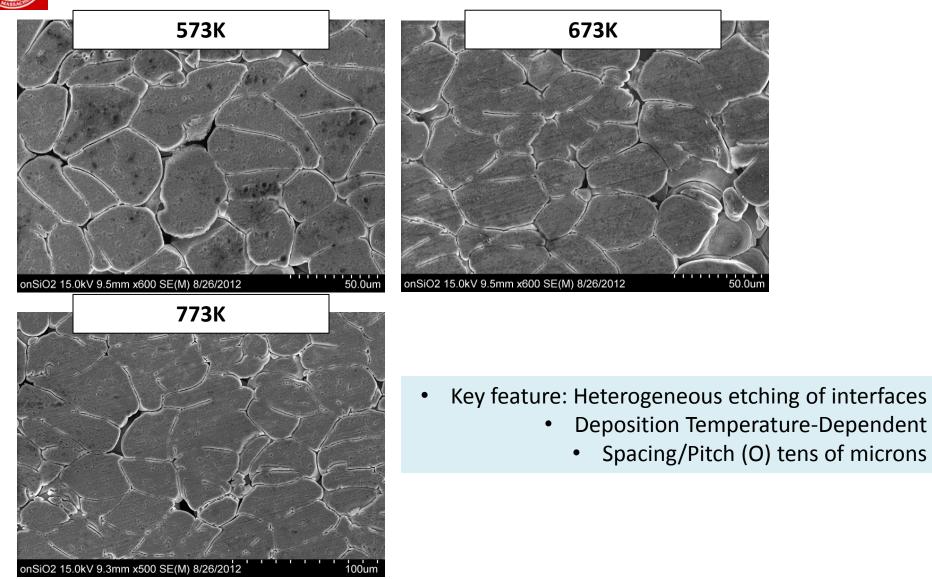
Experimental Considerations

Metallography of aluminum cold-sprayed samples

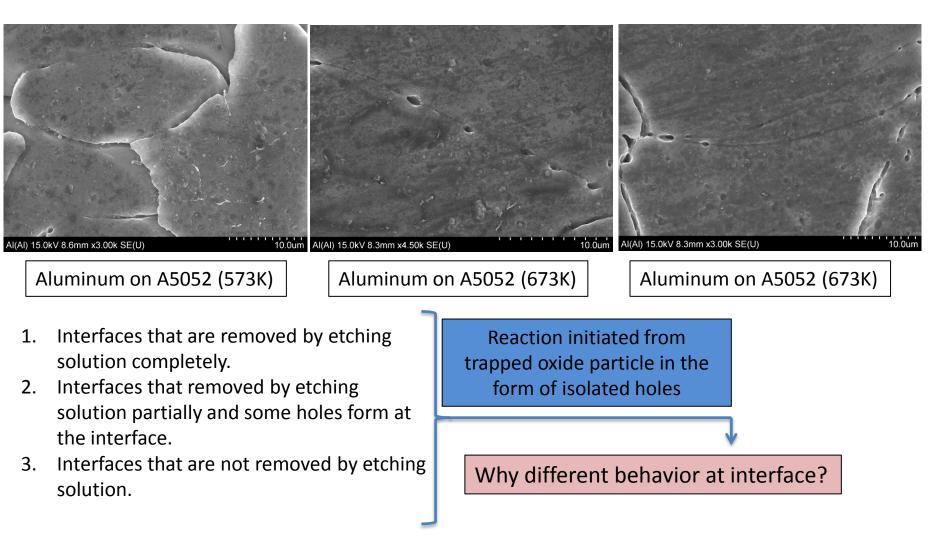
Powder	Substrate	Spray condition
		N ₂ , 3MPa, 573K
Al	A5052	N ₂ , 3MPa, 673K
		N ₂ , 3MPa, 773K

Sample preparation:

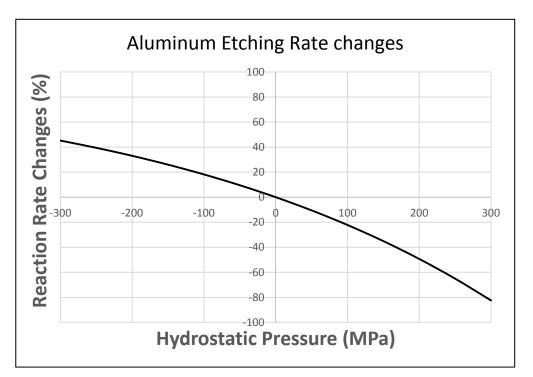
- Samples cut into 1 × 0.5 cm
- Mechanically grinded and polished to 0.3 μm
- Chemically etched (see Table)
- Microstructures studied with Hitachi S4800 field-emission SEM


Coat	Etchant	Concentration	Time	
Al	Distilled water	95 ml		
	Hydrochloric acid	1.5 ml	20 6	
	Nitric acid	2.5 ml	30 s	
	Hydrofluoric acid	1 ml		

• All samples supplied by Plasma-Giken

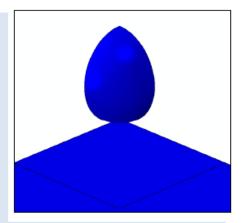

Heterogeneous Bonding in Al Samples

Confidential. Do not distribute.

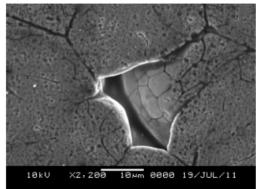

Different types of interfaces in etched Aluminum samples

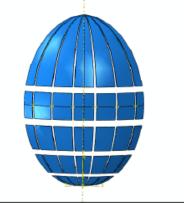
Effect of Hydrostatic pressure on etching rate:

- In cold spray process we are not dealing with uniaxial stress field like the experiment done by Sarkar-Aquino. So it is more convenient to examine the effect of hydrostatic pressure on etching rate.
- In the figure changes of aluminum reaction rate with acid are calculated for a range of pressure fields.
- Aluminum atomic volume is about 10 cm³/mole and pressure can have large effect on its reaction rate.

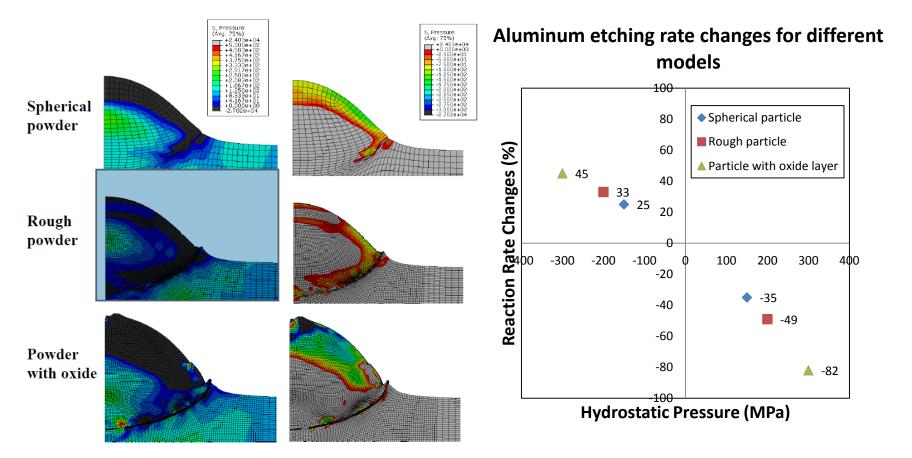


* Swarnavo Sarkar, Wilkins Aquino, Changes in electrodic reaction rates due to elastic stress and stress-induced surface patterns, Electrochimica Acta, Volume 111, 30 November 2013, Pages 814-822,,


Previous Impact model:


- Impact of spherical particle along the Yaxis to the semi-infinite substrate.
- Model type: Dynamic, Tempdisplacement, explicit.
- Material properties: Al1100H12 properties for particle and substrate.

- Plastic deformation Model: Johnson-Cook model
- Initial velocity: 640 m/s (similar to calculated impact velocity for sample made by carrier gas at 300 °C.


Modification to model to address powder roughness and initial oxide layer

Results of Roughened Impact Models

Also important/connected – locations near oxides, high plastic strain, dislocations... brings us to simulations on that scale...

Muftu, Gouldstone, Upmanyu, Ando

Northeastern University

Modeling Note (Nonequilibrium Molecular Dynamics)

Simulation Setup:

Atomic simulation code and computational environment:

- LAMMPS [1] from Sandia National laboratories
- Multi-CPU cluster at NEU

Approximations made at this stage:

- Assume the geometry is atomically flat
- Assume material is chemically pure single crystal

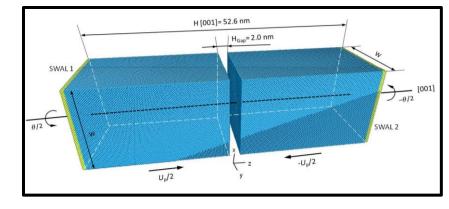
Simulation configuration:

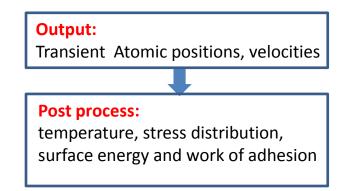
Geometry 1: Commensurate impact on (001) copper surfaces:

15 × 15 × 50 nm³ and 990,000 atoms

Geometry 2: Incommensurate impact on (001) copper surfaces:

- Rotating plates around the z-axis (relative rotation angle 15°, 30° and 45°)
- The systems are on the order of 10⁵ atoms


Atomic interaction potential:


Muftu, Gouldstone, Upmanyu, Ando

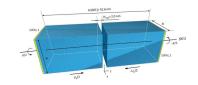
Mishin et al. [2] embedded-atom-method (EAM) potential for copper (many-body pot)

Boundary condition:

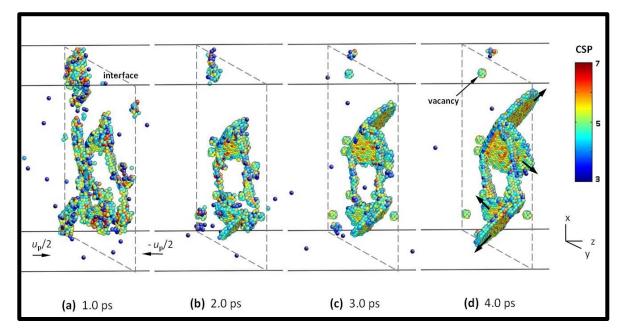
- x-and y-directions: periodical boundary condition
- z-direction: specific Shock Wave Absorbing Layers (SWALs) to remove the reflection wave

[1] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995

[2] Mishin, Y., et al., Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Physical Review B, 2001


Northeastern University

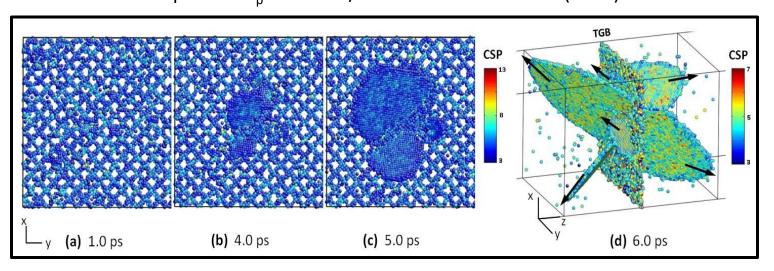
Confidential. Do not distribute.



Overall Response

Dislocation Activities

Dislocation nucleation and emission of impact for $u_p = 600$ m/s commensurate case (perfect fcc atoms are removed)


- Severe disordering sites emerge at interface prior to dislocation
- Some of disordered atoms depress and form stable vacancies
- Partial dislocations are nucleated from the remained disordered loop
- Dislocation emission on close packaged surfaces {111}
- For this case only two pairs of active slip planes can be seen

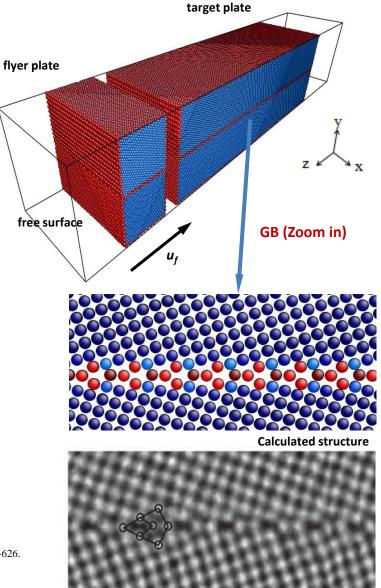
Overall Response

Dislocation Activities

Dislocation nucleation and emission of impact for $u_p = 1200$ m/s incommensurate case ($\theta = 15^\circ$)

- Twist grain boundary (TGB) are formed prior to dislocation
- Defective atoms emerge and mostly located near the TGB
- Partial dislocations are nucleated from disordered TGB sites into both lattice regions
- Dislocation emission on close packaged surfaces {111}
- For this case, small glides are observed on planes parallel to the main slip planes

Bicrystal model:

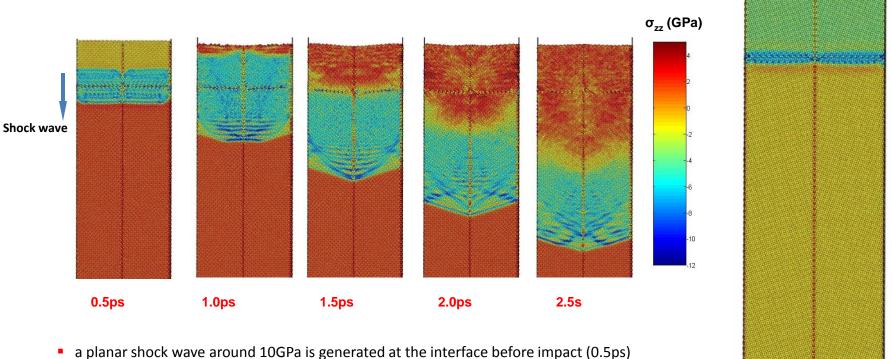

Model description

- material: bicrystal fcc copper
- dimension: 13.74×13.18×6.86 nm³ (flyer), 13.74×13.18×43.44 nm³ (targ
- atom amount: 800,000
- interaction potential: Embedded atom method (EAM) ^[2]
- boundary condition:
- o periodic boundaries perpendicular to ±x directions
- o free surfaces at front and rear surfaces along z direction
- $\circ~\Sigma 5$ (310) GB tilt along [100] axis
- o flyer plate is assigned a desired atom velocity

Simulation procedure

- use molecular statics to determine bicrystal structure
- thermal equilibrium procedure is the same as single crystal model
- I6ps calculation with impact velocities applied to flyer plate

[1] Duscher, G., et al., Bismuth-induced embrittlement of copper grain boundaries. nature materials, 2004. 3: p. 621-626.



HRTEM images ^[1]

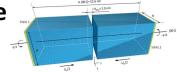
Northeastern University

Stress distribution in bicrystal:

- the wave front no longer keeps planar shape as the wave propagates along z axis
- atoms near grain boundary preform a higher stress state than other atoms
- stable shock wave front is formed at about 1.5ps after impact, with an angle of 144°

Conclusion

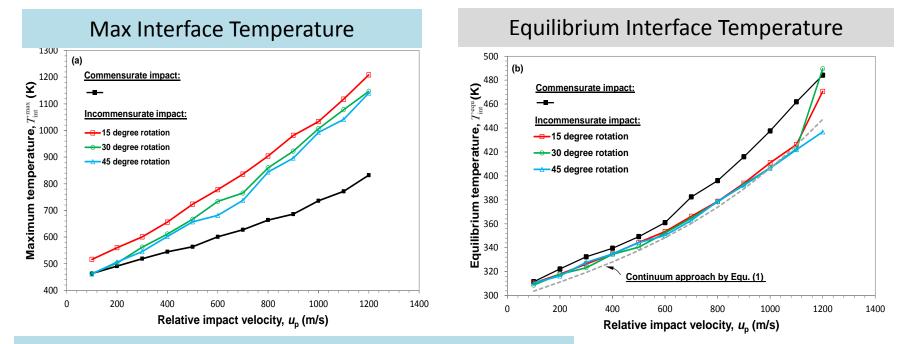
- Impact location:
 - Secondary impact location has bearing on simulation outcome
- Feed rate and cooling time
 - It is shown that it is (more) likely for the particle to reach thermal equilibrium before a second particle hits at the same location.
 - Allowing the initial particle to cool reduces damage
- Temperature:
 - Effects of particle and substrate temperatures are critical
 - Impacting on a heated substrate reduces initial particle damage
- Heterogeneous etch behavior could provide insight into particle bonding
- FEA, MD can provide further insight.



Backup for MD

Temporal evolution of average interface temperature

Confidential. Do not distribute.


(a) Commensurate impact

(c) Incommensurate impact with 30 degree rotation

- Initial KE transfer to interface atoms results in a rapid O(0.1 ps) rise to maximum value
- Followed by a relatively slow decay O(5-10 ps) to a steady value
- Temperature decay is associated with redistribution of interface atoms to HCP state
- Impact causes FCC to become disordered indicative of degree of plastic deformation.
- \circ T_{max} always stays well below T_{melt}.

Interface temperature

Maximum interface temperature

- o increases non-linearly with impact velocity.
- sensitive to interface type.
- o following incommensurate impact is always higher

Equilibrium interface temperature

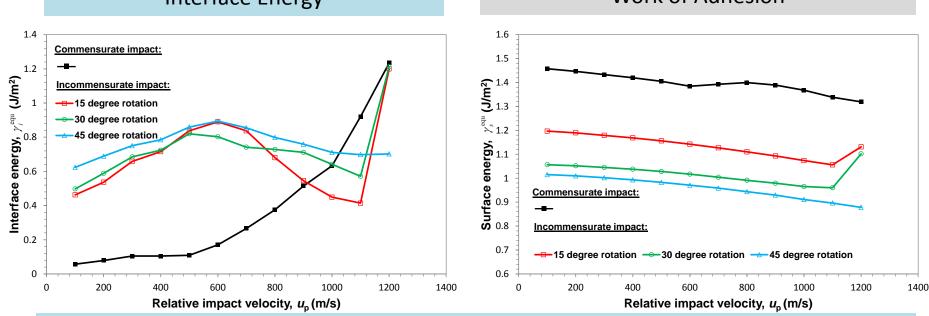
- o following 50 ps simulations is same as in bulk.
- o increases non-linearly with impact velocity.
- o sensitive to interface type.
- o following incommensurate impact is almost always lower

Temperature trend curve fit $T_{i}(t) = T_{i}^{eq} + A \Big[a e^{-t/\tau_{d}} + (1-a) e^{-t/\tau_{r}} \Big]$ Atomic trajectories yield quantitative measures of non-equilibrium surface energy γ_s^H and work of adhesion W^H that together determine bonding characteristics.

Interface energy (enthalpy): Excess interaction energy of the bicrystal E_t compared to energy of the perfect bulk copper crystal, E_b .

$$\gamma_i^H = \frac{E_t - E_b}{A}$$

E_t: Total energy in the system
E_b: Energy in bulk away from interface r
A: Interface area
E_{s1}+E_{s2}: Energy of system after cleaving


Energy (enthalpy) of metallic bonds: obtained by artificially cleaving the interface at z = 0 into two free surfaces. Work done for cleaving give the enthalpy (energy) of metallurgical bonds

$$W^H = \frac{E_{s1} + E_{s2} - E_t}{A}$$

Interfacial energetics

Interface Energy

Work of Adhesion

Interface energy

- o Quantitative trends at low velocities are close to equilibrium values
 - \circ 0 for commensurate and 0.4 0.7 J/m² for incommensurate impacts.
- Consistent with grain boundary energies of FCC metals TGB

Work of adhesion (surface energy):

- This represents effects of non-equilibrium energetics & kinetics on metallurgical bond strength
- Strongest bonds are formed with commensurate impact (expected)
- W^H is weakly related to impact velocity but it decreases with u_p .

Northeastern University

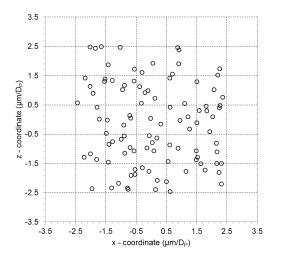
What did we learn from molecular dynamics?

- Temporal variations in
 - Interface temperature: Interface temperature due to creation of a new interface can contribute a significant amount of temperature rise. Although this would dissipate into the bulk ...
 - Work of adhesion is a weak function of impact velocity but a stronger function of orientation
- Plasticity mechanisms due to impact
 - Are responsible for temporal variations of temperature and interface energies

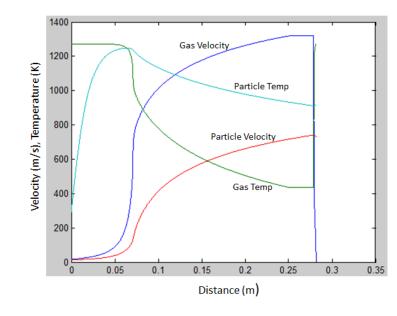
What else can we learn from molecular dynamics?

- Bi-crystal interfaces
- Effects of Initial defects, grain boundaries, nano-scale roughness, oxide content on all of the above ...

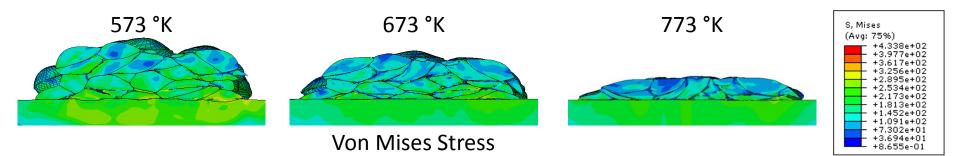
Information (e.g. T_i , W_i) gained from this study is directly applicable/testable in continuum simulations.

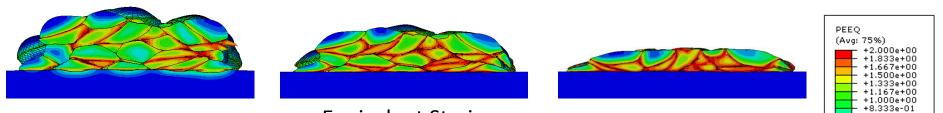


Backup for 100 Particles

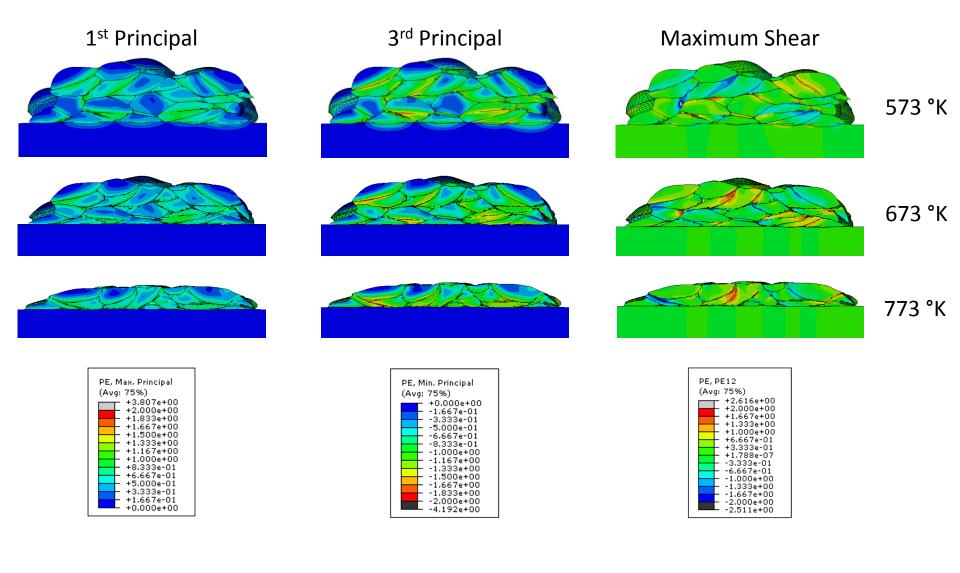


FEA Model

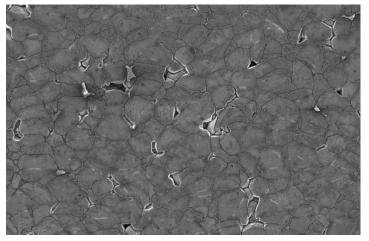

- Aluminum Particles
- Aluminum Substrate
- Diameter: 31 μm
- Particle Position
 - Randomized X-Z coordinates
- Gas Parameters
 - N₂
 - 3 MPa
 - Inlet Temperature: 573, 673, 773 °K



Gas T (K)	Par V (m/s)	Par T (K)
773	677	601
673	632	524
573	581	448

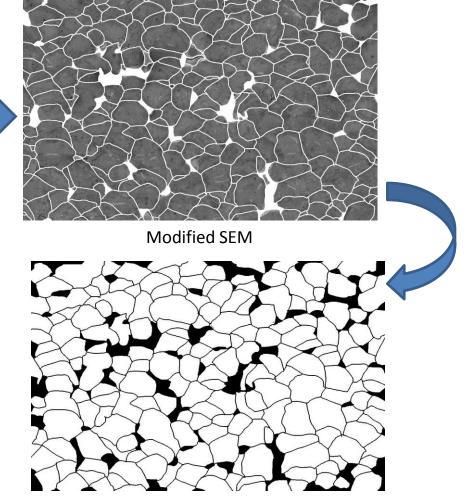

Equivalent Strain

+6.667e-01 +5.000e-01 +3.333e-01 +1.667e-01 +0.000e+00



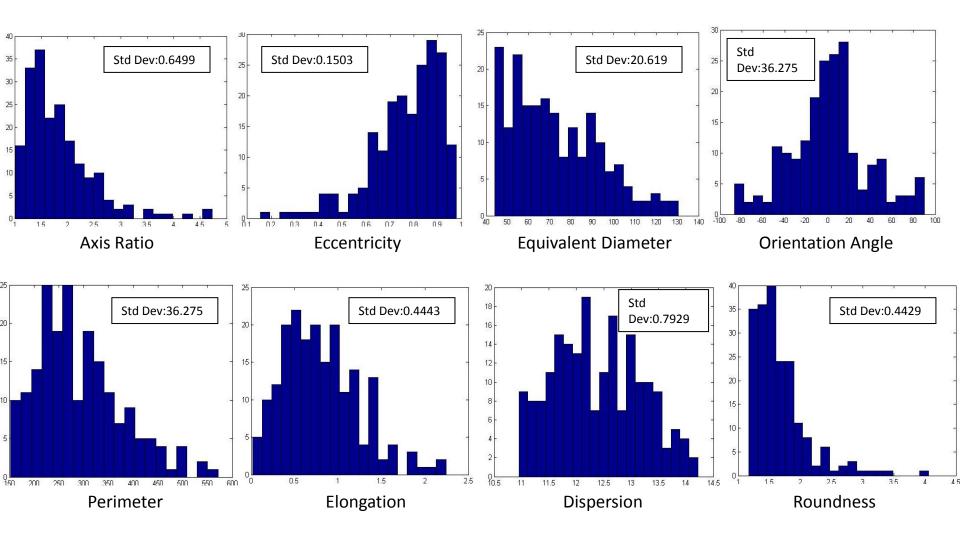
S. Müftü

1st and 3rd Principal and Maximum Shear Strain Distributions



Original SEM

SEM Modification


- Boundaries manually drawn
- Voids filled
- Translated to black and white
- Smallest particles withdrawn
 - Eliminates particle fragments
- Three images analyzed
 - 573 K (250x), 673 K (200x), 773 K (200x)

Black and White SEM

Shape metrics: for SEM Images

Results for SEM image of Al upon Al substrate at 573 K inlet gas temperature