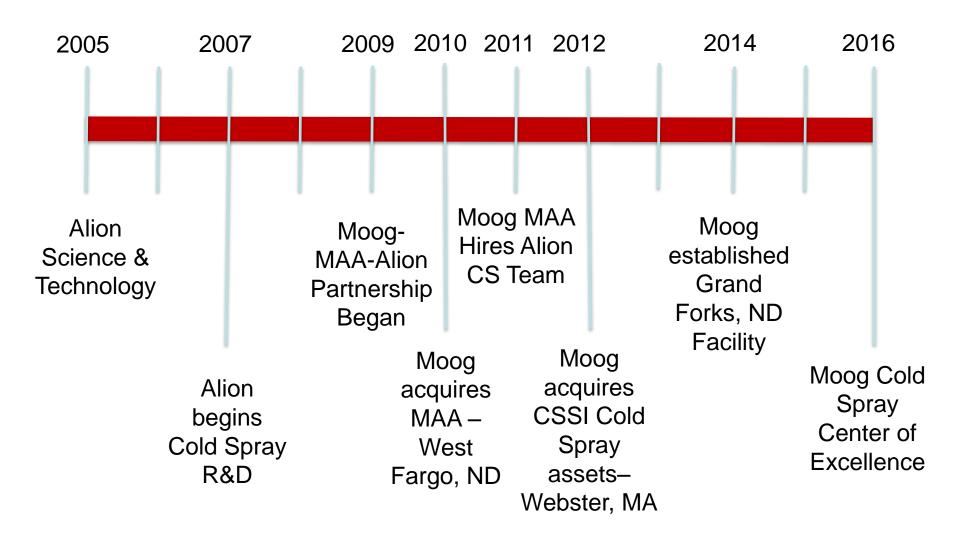


Cold Spray Aerospace Applications

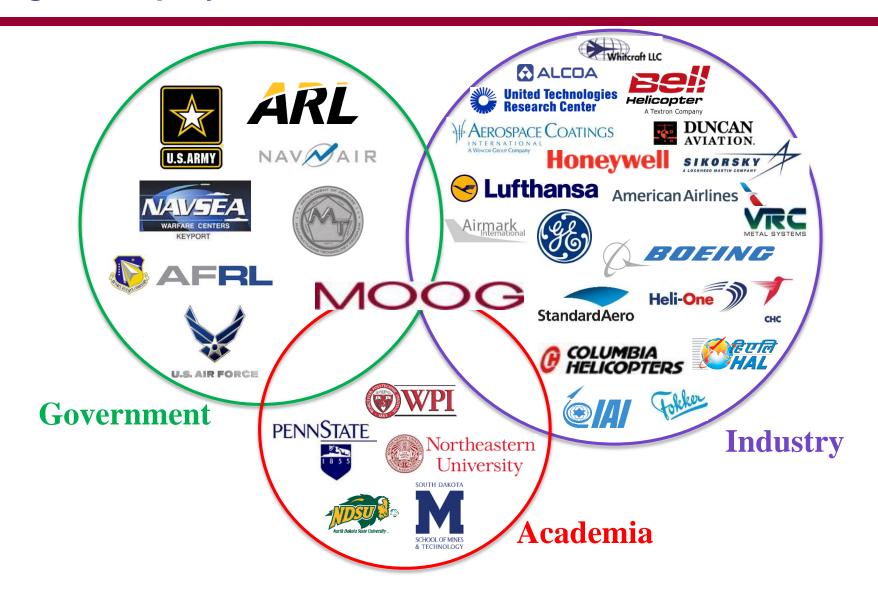

Cold Spray – Technology

Cold spray is an additive manufacturing method where micron sized, metallic powder material is driven to high speed by a compressed carrier gas through a nozzle and directed at a substrate material. The resulting impact and associated particle/substrate's plastic deformation enable a build-up of the feedstock material onto the substrate. The resultant build-up can be machined, heat treated or otherwise handled like stock material.

- Lowest operational temperature in thermal spray family
- Capable of highest particle velocity in thermal spray family
- Does not rely on melting/solidification of feedstock for adhesion

Moog Cold Spray Reference Timeline

Moog Cold Spray Repair Capabilities


- Cold Spray Vendor
- CS Vendor + (Machining, Inspection, Testing, etc.)
- Total Repair Solutions Entity
- Military or Commercial
- High and Low Pressure Systems

Moog Cold Spray Partners

Cold Spray Aerospace Applications

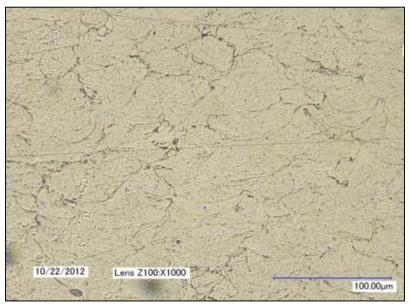
- ...could be considered "Application of Cold Spray on Aerospace Components"
- Need to consider:
 - Technical Viability
 - Considerations for Geometry
 - Material Compatibility
 - Completely characterize existing condition
 - Engineering Substantiation
 - Controlled configuration managed environment
 - ISO9001 (Moog WF, GF, & WEB is AS9100)
 - FAA 145 Repair Station
 - Cost of Repair
 - More than the cost of consumables.
 - Consider cost of other available repair technologies.

Cold Spray – Characteristics and Benefits

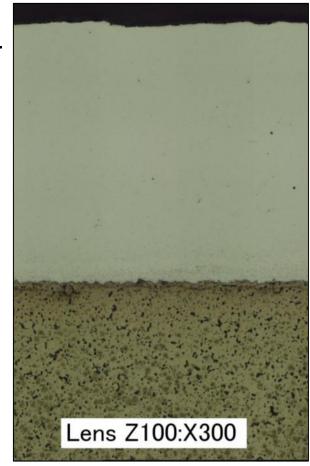
- HP Bond strengths ~ 80-100 MPa (12-15ksi)
- Hardness dependent on Mtl (50 HV to 50 HRC)
- No oxidation
- Compressive residual stress
- Strain hardening
- High density low porosity (<1%)
- Thick coatings
- Heat treatable free forms
- Minimal surface preparation
- No distortion of substrate
- Limited masking
- Low substrate temperatures heating<120C (250F)
- Variety of substrates (AI, Mg, Cu, Ti, Steel, Glass)

Powders	HP LP
Aluminum	00
Copper	00
Nickel	00
Zinc	00
Tin	00
Metal Matrix	00
Composites	
Brass	0
Bronze	0
Silver	0
Alum Alloys	0
Titanium	0
Tantalum	0
Niobium	0
Ti-6Al-4V	0
Inconel 625, 718	0
SS 316L	0
SS 403	0
SS 430	0
Monel	0
Ni-Cr	0
Ni-Al	0

Cold Spray – Some Moog Performance Data

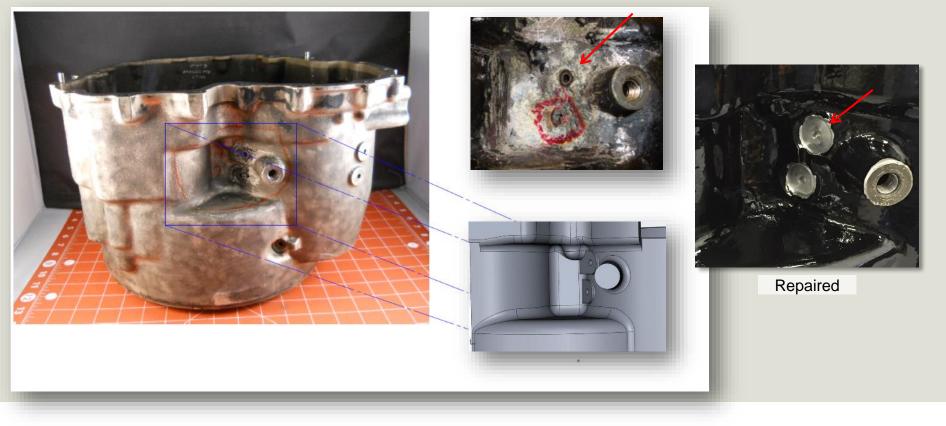

Substrate	Powder	Moog PN	Adhesion	Hardness	Porosity	Additional Properties
Magnesium Alloys (ZE41, AZ61, AZ91, EV31, QE22)	AA6061	EM00258	25 ksi	100-110 HV	<0.50%	Tensile (bulk CS): 38-41 ksi Elongation (bulk CS): 3-5% Lug Shear: 20 ksi
6XXX Aluminum Alloys	AA6061	EM00258	11 ksi (glue)	100-110 HV	<0.50%	Tensile (bulk CS): 38-41 ksi Elongation (bulk CS): 3-5%
7XXX Aluminum Alloys	AA7075	EM00248-002	10 ksi	160 HV	<0.50%	
2XXX Aluminum Alloys	AA6061*	EM00258	11 ksi	100-110 HV	<0.50%	Tensile (bulk CS): 38-41 ksi Elongation (bulk CS): 3-5%
Cast Aluminum Alloys (A356, A357, C355)	AA6061	EM00258	24 ksi	100-110 HV	<0.50%	Tensile (bulk CS): 38-41 ksi Elongation (bulk CS): 3-5% Lug Shear: 22 ksi
Ti6Al4V	Ti6Al4V	EM00248-034	11 ksi (glue)	456 HV	2.0-3.0%	
	CP Titanium	EM00248-016	11 ksi (glue)	230 HV	<1.0%	
Stainless Steel (302, 309, CRES 347, 15-5, 17-4, 300M, 416)	CrC-NiCr	CC13787	11 ksi (glue)	400-450 HV	<1.0%	
	316 Stainless	EM00248-017	11 ksi (glue)	450 HV	<0.50%	
4340 Steel	CrC-NiCr	CC13787	11 ksi (glue)	400-450 HV	<1.0%	
	CP Nickel	EM00248-033	11 ksi (glue)	39-40 HRC	<0.30%	Lug Shear: 12 ksi
Inconel (625, 718)	CrC-NiCr	CC13787	11 ksi (glue)	400-450 HV	<1.0%	
	Inconel 625	EM00248-023	11 ksi (glue)	531 HV	<1.0%	

Cold Spray – Common Applications


- Recover wear/damage areas
- Enhance wear resistance
- Repair corrosion damage
- Prevent corrosion damage
- Recover mis-machined parts/manufacturing defects
- Surface build up
- Conductivity
- Dielectrics
- Thermal management
 - On to applications...

Magnesium Repair with 6061 AI Cold Spray

- 6061 aluminum deposited on ZE41 magnesium
- Porosity: <1%</p>
- Adhesion Strength (ASTM C633-01 / MIL-STD-3021)
 - >11,000 psi (limited due to glue)
- Hardness: **≈100 HV**


6061 coating etched to reveal splat deformation (1000X)


6061 cold spray coating (300X)

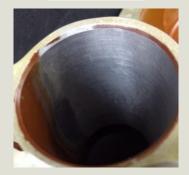
Cold Spray Repair – CSD/IDG Housing

- Repair stator mounts and surrounding recessed area of Integrated Drive Generator (IDG) Housing.
- Moog developed repair procedure
- Moog generated CAD model of the IDG housing

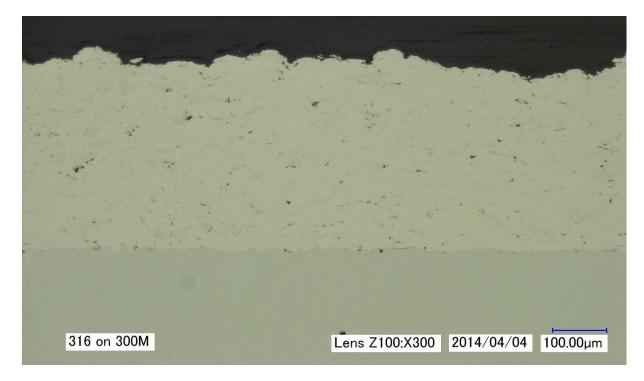
Cold Spray Repair– S-92 Sump

Cold Spray Repair- S-92 Sump

As Received



As Sprayed



Machined

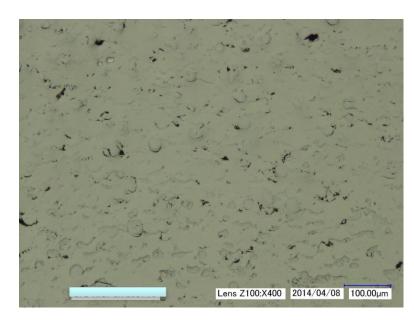
Stainless Steel Repair with 316 SS Cold Spray

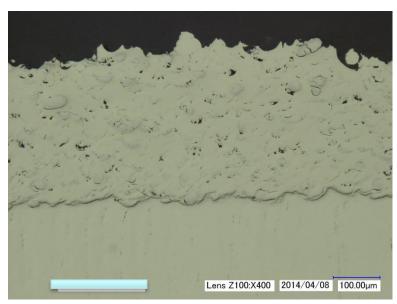
- 316 Stainless Steel on Various Steel and Stainless Steel Alloys
- Porosity: **≈0.5%**
- Adhesion Strength (ASTM C633-01 / MIL-STD-3021)
 - >11,000 psi (limited due to glue)
- Hardness: 45 HRC

Stainless Steel Repair Cold Spray

Repair of Aerospace Valve Component

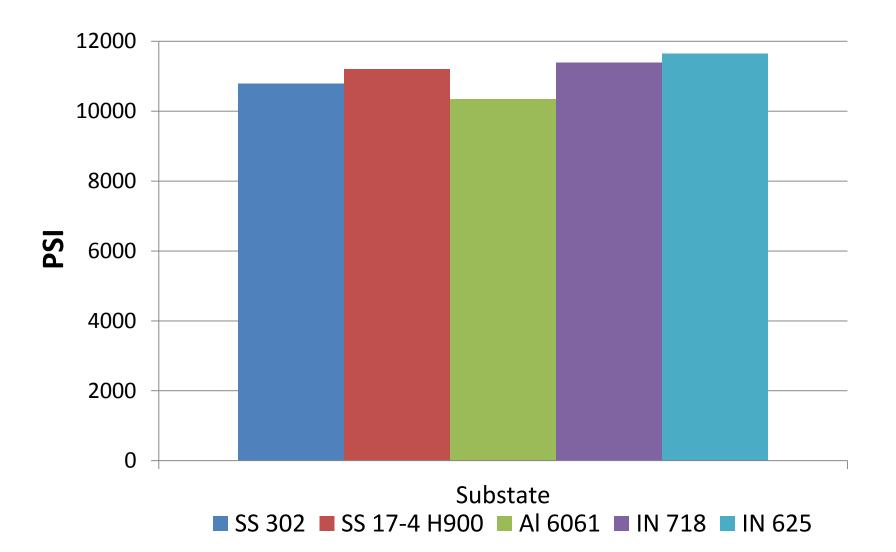
Stainless Steel Cold Spray Repair


- Two Repair Areas
 - Mid Shaft
 - Wear Lugs

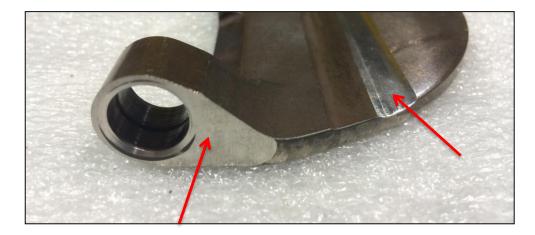


Cold Spray Repair with Nickel-Carbide Matrix

- Nickel-Carbide Matrix on various Stainless Steel and Inconel Alloys
- Porosity: <1%</p>
- Adhesion Strength (ASTM C633-01 / MIL-STD-3021)
 - >10,000 psi (limited due to glue)
- Hardness: 400-460 HV

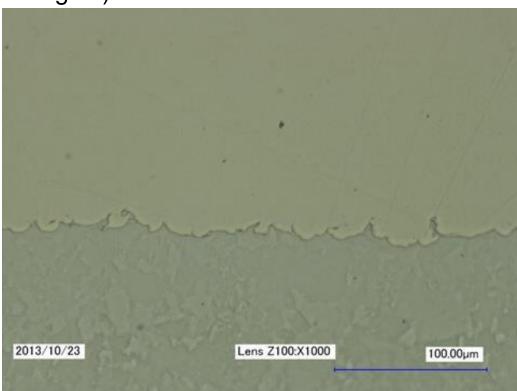


Ni-Carbide Matrix on SS 302 (400X)


Ni-Carbide Matrix (400X)

Cold Spray Repair with Nickel-Carbide Matrix

Cold Spray Repair with Nickel-Carbide Matrix


Repair of Aerospace Valve Components

Corrosion Protection with Nickel Cold Spray

- Commercially Pure Nickel on 4340 Steel
- Porosity: <0.5%</p>
- Adhesion Strength (ASTM C633-01 / MIL-STD-3021)
 - >10,000 psi (limited due to glue)
- Hardness: ≈ 370 HV

Nickel Cold Spray Repair

- Nose Wheel Steering Component
 - Refurbished with Nickel Cold Spray

Staff

- Product Line Engineering
 - FAA DER on Staff
 - FAA DER Major Repairs Systems/Equipment, Propulsion Accessories, Repair Specifications
 - Delegations for fixed wing and rotorcraft (Parts 23, 25, 27, 29)
- Experienced Cold Spray Engineers –all Degreed engineers with 5+ years cold spray specific experience
- Metallurgical Engineer Ph.D. on Staff
- Cold Spray Technician 10+ years of thermal spray experience and 20 years in aircraft and armament systems maintenance.
- AS9100 and AS9110 Certified
- FAA 145 Repair Station Certificate(s)
- Cold Spray Equipment VRC GEN3, CGT HPCS, Plasma Giken HPCS, Centerline LPCS and MPCS
- Other 5-Axis CNC, 3-Axis CNC's, Tooling Fixtures, CNC Lathes, NDT Capability, Full Metallurgical Lab Facilities

Conclusion

- Significant total cost savings
 - Save on inventory, lead time and labor costs
- Repair vs. Replacement
 - Repair time reduction
 - Reduced acquisition timeline & cost
- Improved production yield
 - Salvage parts with manufacturing defects
- Versatile coating method
- Numerous Coating/Substrate combinations
- Engineered coating properties
- When properly assessed, developed, documented and certified.

Acknowledgements

- Chris Howe, Project Engineer Moog Webster, MA
- Ranko Todorovic, Chief Metallurgist Moog Grand Forks, ND
- Ben Hoiland, Sr. Product Engineer Moog Grand Forks, ND
- Mike Parzych, Product Engineer Moog Webster, MA
- Victor Champagne, Director US Army Research Laboratory Center for Cold Spray Aberdeen Proving Ground, MD

THANKS!