

Massachusetts Materials Technologies LLC

Nondestructive Strength and Toughness Testing Applied to Cold Sprayed Aluminum 6061

S. Bellemare, K. Taniguchi, J. Shelton, B. McNally and V. Champagne

Massachusetts Materials Technologies LLC (MMT)

2014

Year company founded

12

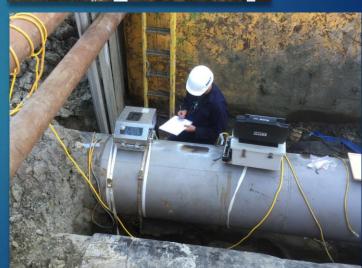
Employees (6 Full-time equivalent) 2

Non-Destructive Testing (NDT) technologies

Mission: Improve safety globally through costeffective NDT technologies

Methods to Measure Metal Strength

Destructive Cut-Out

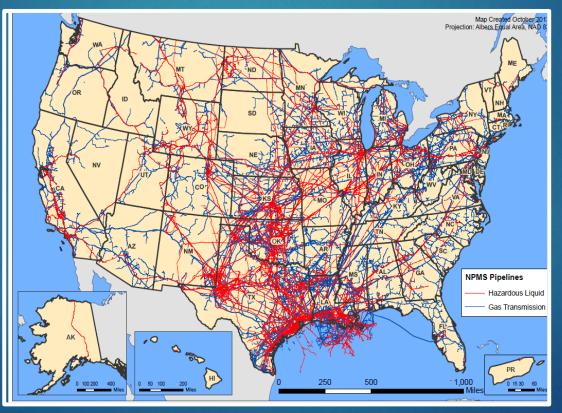


Nondestructive Portable Instrument

MMT's Revolutionary Technology

MMT's Nondestructive Portable Instrument

MMT Team at Your Service



Many structures are made of metal

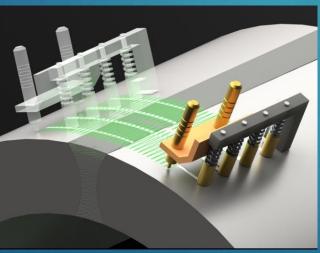
- Pipelines
- Aircrafts
- Ships

Metal weakness can cause catastrophic failures

Other Nondestructive Applications

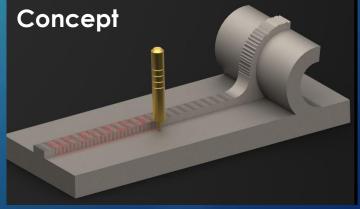
Energy • Defense • Aerospace • Infrastructure

Where materials and welding processes are relied upon for their strength and toughness.

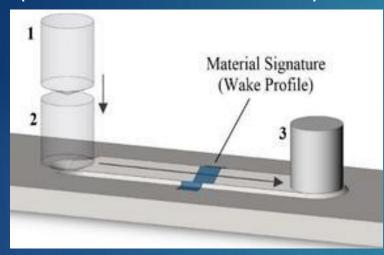

Two New Instruments for Nondestructive Testing

Hardness, Strength and Ductility (HSD) (via frictional sliding)

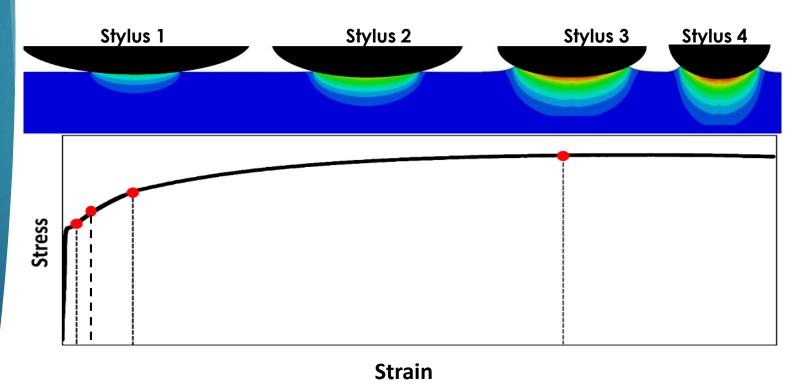
Field unit on pipe



Concept on seam pipe

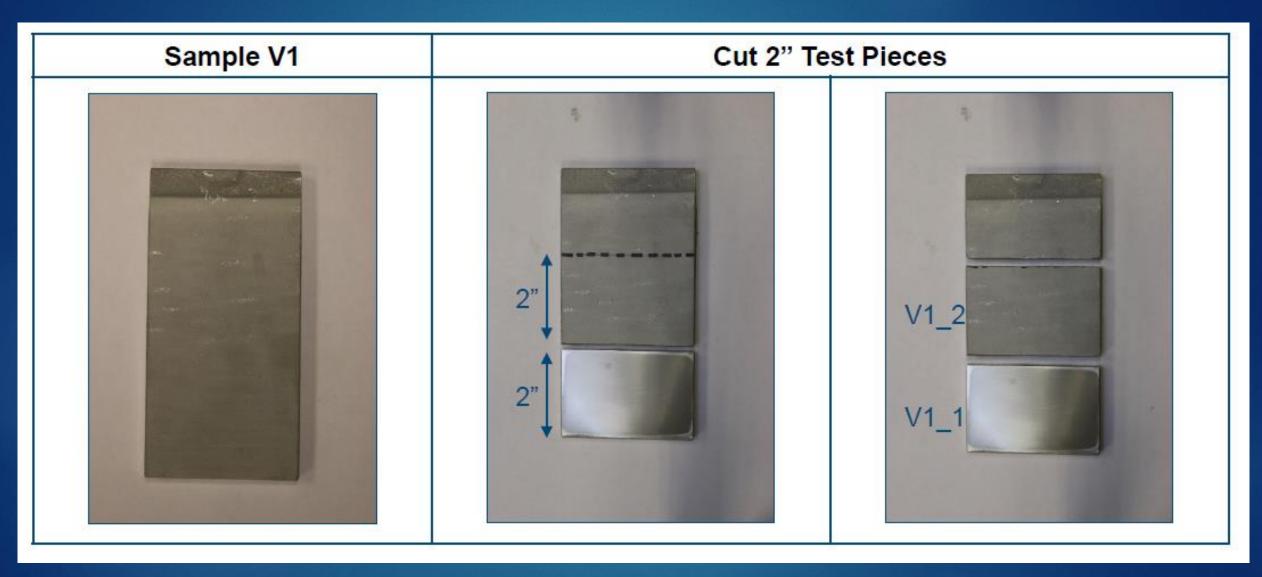

Fracture Toughness Tester (FTT) (via micromachining)

Innovative Breakthrough

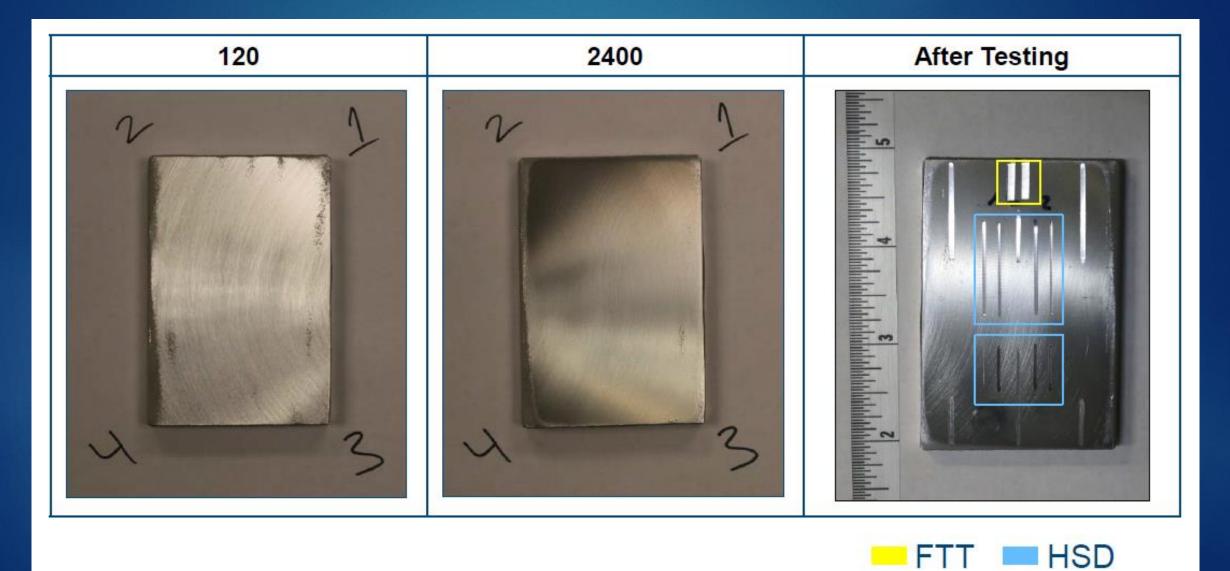

Performs frictional sliding (instead of indentation)

Technique supported by strong analytics – relationship with lab tensile test curve established (Bellemare PhD thesis, MIT, 2006)

Superficial grooves (less than 1 mil in depth)



Validation Testing


"Direct measurement" of yield within 5% for material tested.

Sample	Туре	Tensile Test 0.5% YS [ksi]			HSD Prediction 0.5% YS [ksi]			Range Error	Average Error
		Min.	Max.	Avg.	Test 1	Test 2	Avg.		
08T2	Midwall	34.4	40.3	37.0	38.3	35.8	37.0	0.0%	0.0%
F004	Flat	43.3	43.5	43.4	40.1	41.9	41.0	-5.3%	-5.6%
24T2	Midwall	43.4	44.5	44.0	45.8	46.7	46.2	3.9%	5.2%
12SLF	Midwall	43.3	47.7	45.5	46.0	45.9	46.0	0.0%	1.0%
14GRB	Midwall	42.8	51.7	47.3	50.7	48.0	49.4	0.0%	4.4%
12Y64	Midwall	49.4	50.5	50.3	51.8	50.3	51.1	1.1%	1.6%
18GRB-B	Midwall	50.6	53.7	52.2	51.5	52.0	51.8	0.0%	-0.8%
F001	Flat	53.5	54.0	53.8	53.8	55.5	54.6	1.1%	1.6%
16X42	Midwall	54.1	58.0	55.7	58.0	57.0	57.5	0.0%	3.2%
F015	Flat	56.1	56.9	56.5	59.8	58.5	59.1	3.9%	4.6%
10SHF	Midwall	64.1	66.0	65.0	60.8	63.0	61.9	-3.4%	-4.8%
16GRB	Midwall	69.8	70.2	70.0	72.1	69.9	71.0	1.1%	1.4%
F005	Flat	70.6	72.7	71.7	68.9	71.3	70.1	-0.7%	-2.2%
T3011	Midwall	72.5	73.0	72.7	69.6	70.0	69.8	-3.7%	-4.0%
F028A	Flat	53.8	55.8	54.8	52.1	52.8	52.5	-2.4%	-4.2%
F041	Flat	64.9	65.8	65.4	67.3	67.8	67.6	2.7%	3.4%
F030A	Flat	65.7	68.4	67.5	70.5	64.7	67.6	0.0%	0.1%

Aluminum 6061 Cold Sprayed

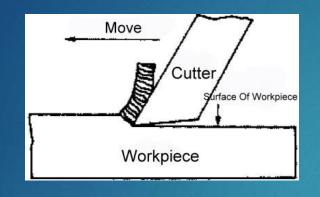
Aluminum 6061 Cold Sprayed

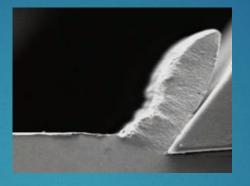
Aluminum 6061 Cold Sprayed (HSD blind test results)

Sample	Yield Strength EUL @ 0.5% [ksi]			Ultimate Tensile Strength [ksi]			Work Hardening Exponent		
	Test 1	Test 2	Average	Test 1	Test 2	Average	Test 1	Test 2	Average
V1	36.8	36.0	36.4	38.9	42.5	40.7	0.043	0.087	0.065
V3	29.3	30.0	29.7	39.6	41.0	40.3	0.130	0.134	0.132
W1	32.9	36.6	34.7	50.8	50.1	50.5	0.170	0.135	0.153
W2	33.0	31.4	32.2	45.0	41.5	43.2	0.134	0.124	0.129
M1	36.6	37.4	37.0	43.7	44.3	44.0	0.091	0.088	0.090
M2	37.4	38.7	38.1	37.4	46.5	42.0	0.128	0.092	0.110
M3	43.8		43.8	43.9		43.9	0.001		0.001
M4	36.5		36.5	46.7		46.7	0.236		0.236

Unprocessed

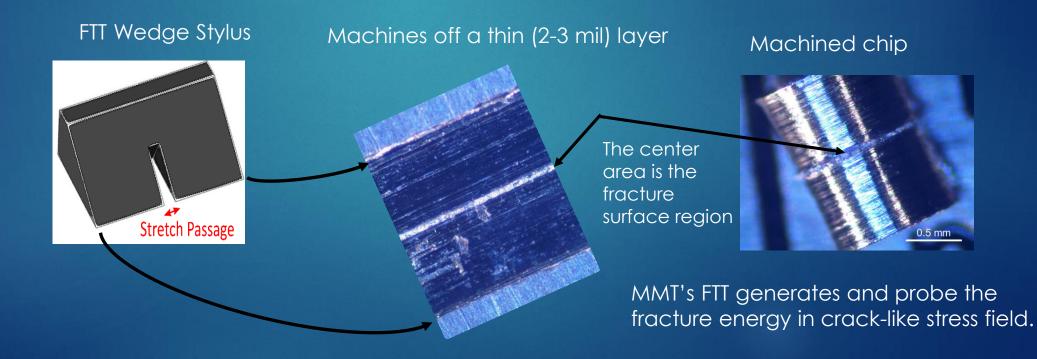
Processed

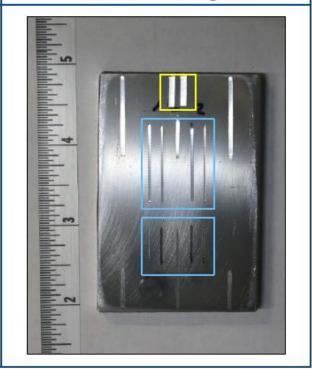

Unprocessed


Processed

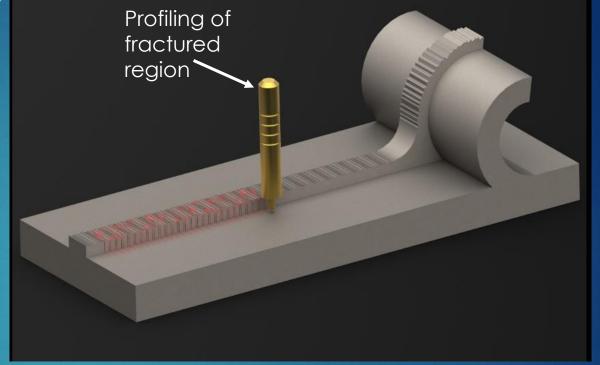
V3 (UTRC) expected SY 33.8 ksi & UTS 40.5 ksi

MMT's Fracture Toughness Tester (FTT)


Started from Machining Process:


Traditional machining removes a layer of material through (predominantly) shear fracture

MMT's revolutionary concept:



Aluminum 6061 Cold Sprayed

Sample	Max. Ligament Height [um]							
Campic	Test 1	Test 2	Test 3	Avg.				
V1	18.7	18.8	14.9	17.5				
V3	23.8	37.7	34.2	31.9				

% Difference (V1/V3)

-45.2%

Potential Steps Forward

Determine hat is really needed – input / discussion

- Improve sample preparation / tool geometry for specific applications
- More lab sample validation
- Extend to specific needs as most appropriate (bond strength?)

Simon Bellemare, CEO s.bellemare@bymmt.com 617.868.0395 Rich Howe, VP <u>r.howe@bymmt.com</u> 617.750.7456 Jayne Shelton, GM j.shelton@bymmt.com 206.790.4287