Systematic Tuning of Cold Spraying for Aerospace Applications

Thomas Klassen, K. Binder, M. Villa-Vidaller, F. Gärtner, T. Gartner, H. Assadi

Helmut Schmidt University, University of the Federal Armed Forces Hamburg Helmholtz-Zentrum Geesthacht GmbH Lufthansa Technik AG, Hamburg Germany

CSAT2016, Worcester June 21-22

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Helmholtz-Association of National Research Centres Portfolio Helmholtz-Zentrum Geesthacht

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

1/3 Coastal and Climate Research

Total budget 95 Mio €

Employees 850

2/3 Materials Research for sustainable Energy and Mobility

Research on Novel Aircraft Structures and Manufacturing Technology

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Theory

Design, Modeling & Simulation

La manuel a manuel

Characterisation

Microstructure and Residual Stress

Additive Manufacturing and 3d Refurbishment

Model Experiments and Prototypes

Kinetic Spraying: Basic Mechanisms

Particle Impact

temperature field showing thermal flow

TEMP **Area of Bonding** (Ave. 752 ODS Implue0025 Cu600 com98 FM.odb ABAQUS/Explicit 6.4-2 ement 2567: Step Time = 3.5005E-02 eformed Var: U Deformation Scale Factor: +1.000e+00 ABAQUS/Explicit 6.4-2 Mon May 03 09:50:52 Westeuropäis t.odb 2296: Step Time = 1.0000E-04 Deformation Scale Factor: +1.000e+00 Var: II

$25~\mu\text{m},\,600$ m/s, $20^\circ\text{C},\,\text{Cu}$

Klassen, Gärtner, Assadi, ASM Handbook on Cold Spraying

Single impact Ti-6Al-4V on Ti after cavitation

 Helmholtz-Zentrum

 Geesthacht

 Zentrum für Material- und Küstenforschung

CPT

... and found

María Villa, T. Breckwoldt, A. List

Process Improvements: Window of Sprayability

Klassen, Gärtner, Assadi, ASM Handbook on Cold Spraying

Helmholtz-Zentrum "all-inclusive" quality parameter: η

Geesthacht

H. Assadi et al.: "On Parameter Selection in Cold Spraying", JTST 20 (2011) 1161 15

Kinetic Spraying: Titanium

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Window of Deposition: Ti

Ref.: K. Binder, "Kaltgasspritzen von ermüdungsfesten Titanschichten, PhD.-Thesis, Hamburg 2013

Parameter selection: optimum Ti-powder sizes

 Helmholtz-Zentrum

 Geesthacht

 Zentrum für Material- und Küstenforschung

⇒optimum size range: 20 – 50 μm (D₅₀ = 33 μm)

Klassen, Gärtner, Assadi, ASM Handbook on Cold Spraying

Parameter selection η, DE (gas pressure, gas temperature)

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

 \Rightarrow saturation in DE: reached at η > 1.2; p > 40 bar, T > 800°C

Klassen, Gärtner, Assadi, ASM Handbook on Cold Spraying

Parameter selection Zentrum für Material- und Küstenforschung η, UTS (gas pressure, gas temperature)

Helmholtz-Zentrum Geesthacht

η

nozzle 24

 \Rightarrow strength > 220 MPa reached at η > 1.4, here p_{qas} : 60 bar, T_{qas} : 1000°C

Parameter selection η, **UTS (nozzle selection)**

η

 Helmholtz-Zentrum

 Geesthacht

 Zentrum für Material- und Küstenforschung

UTS

nozzle 50

===> strength > 300 MPa at η > 1.5, p_{gas} > 50 bar, T_{gas} > 900°C

Zentrum für Materiai- und Kustenforschung

properties of cold sprayed Ti

Ti - Coatings: Microstructure

impact morphology

coating microstructure

Shear strength: η

UNIVERSITÄT

Zentrum für Material- und Küstenforschung

Ref.: K. Binder, "Kaltgasspritzen von ermüdungsfesten Titanschichten, PhD.-Thesis, Hamburg 2013

Cohesive strength: η

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

H. Assadi et al.: "On Parameter Selection in Cold Spraying", JTST 20 (2011) 1161

deposit strength and ductility: MFT-Test

 Helmholtz-Zentrum

 Geesthacht

 Zentrum für Material- und Küstenforschung

deposit strength and ductility after annealing: MFT-Test

Zentrum für Material- und Küstenforschung

Helmholtz-Zentrum

Fatigue strength similar to bulk Ti (grade 2)

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

HSU Cold sprayed Ti samples show damage tolerance during HCF-testing

ductile failure

"riverlines"

production of complex Ti-parts

goals achieved:

fatigue strength 93% bulk tensile strength 560 MPa < 0.1% porosity > 95% DE < 1500 ppm Oxygen

Cold Spraying of Al-alloys

Cold Spraying of Al-alloys Parameter selection η (gas pressure, gas temperature)

Coating Microstructures

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Spraying conditions	Cross-section hardness HV 0,3	Surface hardness HV 2.0	Porosity	η
А	97 ± 7	102 ± 7	0,8 ± 0,1	1.21
В	104 ± 5	105 ± 5	0,23 ± 0,05	1.35
С	106 ± 4	107 ± 4	< 0,1	1.45
D	105 ± 4	106 ± 8	< 0,1	1.14
F	89 ± 5	92 ± 6	1,73 ± 0,07	1.30

Shear Test

Helmut schmidt universität

Coatings microstructures and properties

Coatings Strength (MFT)

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Helmut schmidt universität

Tensile strength (MFT) vs eta

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Helmut schmid Universität

Coating Strength (MFT)

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Helmut schmidT universität

Parameters	yield strength (MPa)	UTS (MPa)	ductility (%)	total elongation (%)
В	277 ± 9	299 ± 6	$0,7 \pm 0,3$	$0,8 \pm 0,3$
B-T6 Treatment	289 ± 10	310 ± 4	1,0 ± 0,3	1,1 ± 0,4
С	293 ± 20	333 ± 3	2,7 ± 1,7	4,9 ± 1,7
C-T6 Treatment	291 ± 5	338 ± 7	3,1 ± 0,3	5,4 ± 1,0
D	-	169 ± 31	0,0	0,0
D-T6 Treatment	264	240 ± 36	0,1 ± 0,1	0,1 ± 0,1

Rupture Zone (MFT)

Quality Management: Electrical conductivity vs strength

Zentrum für Material- und Küstenforschung

Helmholtz-Zentrum

Geesthacht

Kinetic Spraying – Ni-based superalloys

Ni-Superalloys: less brittle than expected due to deformation-induced phase transformation upon impact

process gas: He

• Dense coating despite low impact temperature by spraying with He

Kinetic Spraying – Intermetallics

Intermetallic Fe - 40at.%Al

Cinca, List, Gärtner, Guilemany, Klassen: Surf. Coatings Technol. 268 (2015) 99

