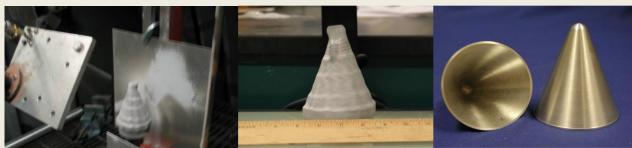


ARL

Cold Spray for Additive Manufacturing CSAT 2016

Blake Barnett Near Net Shape Processing Team Materials Manufacturing and Technology Branch ORISE Contractor to the US Army Research Laboratory Aberdeen Proving Ground, MD 21005

> DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited The Nation's Premier Laboratory for Land Forces


UNCLASSIFIED

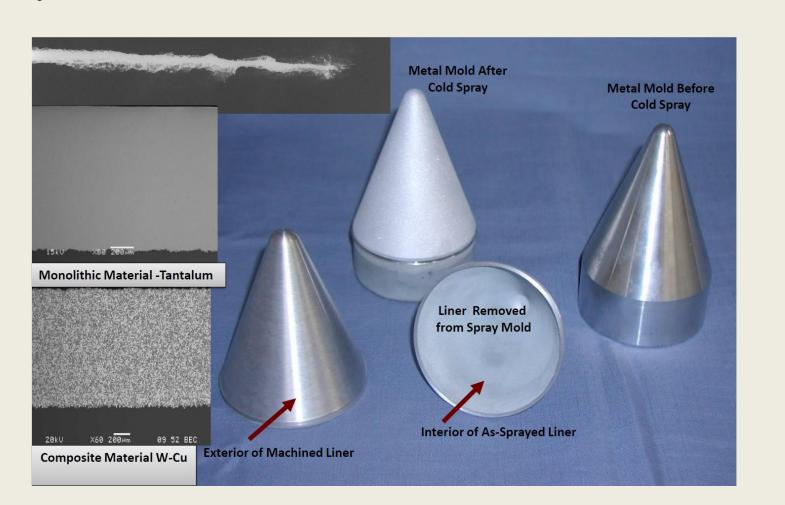
Outline

- AM Comparison
- Cold Spray Applications
 - Sputter Targets
 - Shaped Charge Liners
 - Donor Tubes
 - Objectives
 - Approach
 - Results & Future Work

Cold Spray for AM

Cold Spray vs. Powder Bed Fusion Properties

	Cold Spray ¹	PBF (E-Beam) ²	
Build Rate, lbs/hr	20	<0.6	
Post-Processing	Machining	Machining, Heat Treat/HIP	
Layer Thickness, in.	.002010	.002008	
Atmosphere	Air	Vacuum	
Maximum Part Size	Unlimited	Machine-Dependent	
Microstructure	Retained from Feedstock	Process Dependent (Solidification Kinetics)	
Target Geometries	Axisymmetric Shells	Lattices, Internal Features	


[1] V.K. Champagne, A. Nardi, D. Cote. "Materials Characterization of Advanced Cold Spray Aluminum Alloys" In S.R. Bingert, S.H. Luk. *Advances in Powder Metallurgy & Particulate Materials*—2015. Paper Presented at Powdermet 2015, San Diego, CA (10-15—10-29). Metal Powder Industries Federation, Princeton, NJ.

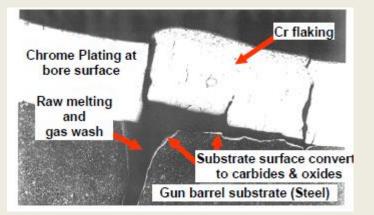
[2] J. Hiemenz. "Electron Beam Melting" Advanced Materials & Processes vol. 165, pp. 45-46. Mar. 2007

u.s. army **RDECOM**®

Shaped Charge Liners

ARL

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited The Nation's Premier Laboratory for Land Forces


U.S.ARMY

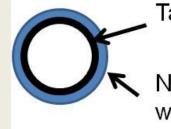
Donor Tube Objectives

- Extend Cannon Life & Accuracy
 - Chrome-Plated Steel Wear
 - Refractory Metals for Reliability

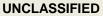
"Elimination of Chromium Electrodeposition from Large Caliber Launch Systems", *Krystyna Truszkowska*, US Army Benet Laboratories (ARDEC), Hard Chrome Alternatives Team, 20-21 July 2004, Utah

- Reduce Manufacturing Costs Associated w/ Chrome Plating
 - Hex Chrome Bath Hazards
 - Occupational
 - Environmental
 - Hex Chrome Bath Costs
 - Industrial Hygiene &
 - **Engineering Controls**
 - Hazardous Waste Disposal

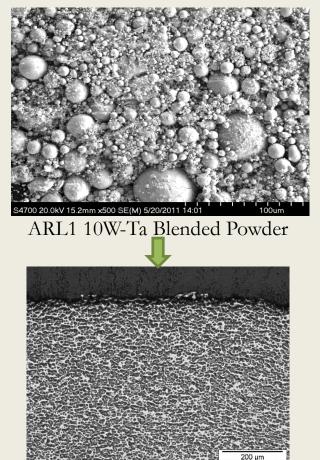
Chrome Plating Bath Northwest Chrome, http://www.nw-chrome.com/chrome-plating/

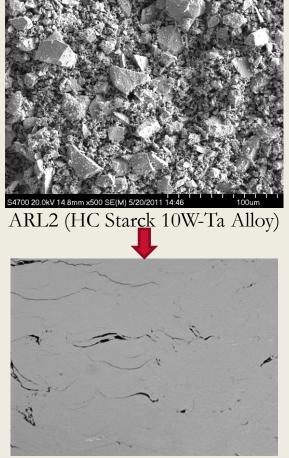


Why Cold Spray?

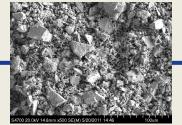

- Geometry
 - Materials Savings over subtractive methods
 - Tantalum ore near \$200/kg in June 2016³
 - Design Flexibility
 - No dies required to adjust diameter & wall thickness
 - Extreme aspect ratios possible without high-cost tooling
- Materials Flexibility
 - Tantalum
 - Tungsten
 - Niobium
 - Alloyed & Blended Feedstock
 - Functionally Graded and Concentric Multi-Layer Systems

[3] http://www.infomine.com/investment/metal-prices/tantalite-ore/6-month/


Ta ID for performance

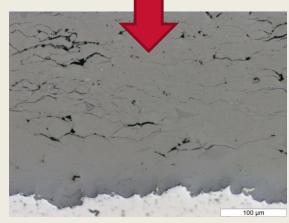

Nb for cost and weight savings

Develop Refractory CS Materials & Demonstrate Feasibility Medium & Small Caliber Donor Tubes

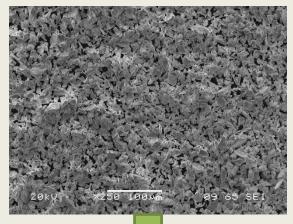

AR

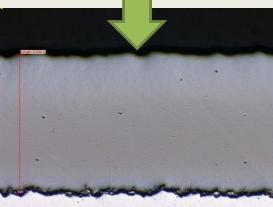
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED



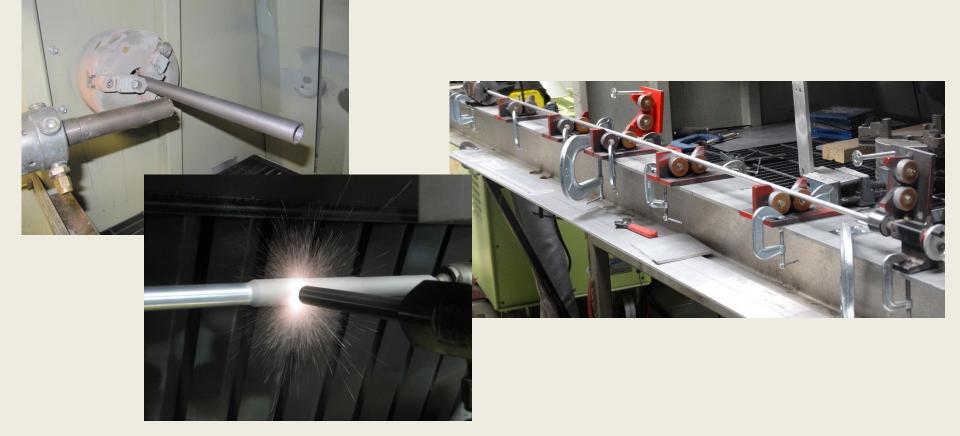
Alloy Material Optimization **ARL**




Coarse Fraction

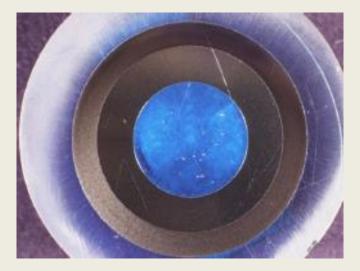
Fine Fraction

500 ur



Fabrication

Medium Caliber


Small Caliber

Donor Tube Cross Sections ARL

Medium Caliber (with mandrel)

Small Caliber (Bilayer)

Full Scale Donor Tubes

Medium Caliber (3 ft length)

Small Caliber

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

Conclusions

- Cold Spray AM demonstrated for axisymmetric structures
 - High throughput, low resolution
 - Compatible with a wide range of materials
 - Minimal post-deposition processing
- Future Work
 - Dimensional Studies
 - Residual Stress Analysis and Predictive Distortion Tools
 - Automated Path Planning
 - Capillary Cold Spray for fine features

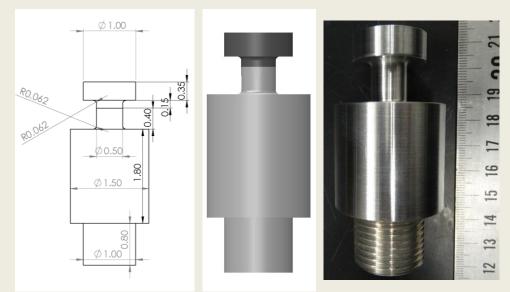
The Nation's Premier Laboratory for Land Forces

Cold Spray Testing for Structural Repair CSAT 2016

Dan Kaplowitz, PhD Near Net Shape Processing Team Materials Manufacturing and Technology Branch ORISE Contractor to the US Army Research Laboratory Aberdeen Proving Ground, MD 21005

Non-structural Repair

- Cold spray materials well established for non-structural repair
 - Aerospace Al alloys on cast Al and Mg
 - Bronze component repair
 - CrC NiCr for high hardness steels
 - Ti, SS, Cu, Ni, and other materials
- Common mechanical tests for cold spray repair
 - Triple lug shear
 - Tensile
 - Fatigue
 - Adhesion via ASTM C633 "bond bar test"
- ASTM C633 adhesion test constraints
 - Test capability limited by glue properties
 - FM1000 glue 10,000 psi @ RT


- Successful test result typically listed "glue failure @ > 10,000 psi"
- Structural repair: need accurate adhesion strength at 10-30,000 psi

Modifying ASTM C633

- Glueless Adhesion Test
 - Evaluate full adhesion strength
 - Enables elevated temp testing
- Specimen Design
 - Neck and cap design based on Huang and Fukanuma¹
 - Cold spray / substrate interface located in neck
 - 1.5" substrate bar diameter to accommodate cold spray taper
- Fixturing Design
 - Dual plate fixture accommodates varying cap thicknesses
 - Couples to load frame similar to ASTM C633 uniaxial loading design

[1] Huang, R., Fukanuma, H. J. Thermal Spray Tech. 2012, 21, 3, 541.

UNCLASSIFIED

Glueless Adhesion Test

Al 6061 cold spray on cast Al C355-T6 test specimens: as sprayed condition



Glueless Adhesion Test

Fixturing for uniaxial loading


RDECOM®

Tested specimen

Failure at deposit/substrate interface

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

Cold Spray AI 6061 on Cast Mg ZE41A-T5 and Cast AI C355-T6 Glueless Adhesion Test Results

Substrate	Max Load (lbf)	UTS (ksi)	Failure Mode
Mg ZE41A-T5	4810	24.5	Adhesion to substrate failure
Mg ZE41A-T5	4664	23.8	Adhesion to substrate failure
Mg ZE41A-T5	4710	24.0	Adhesion to substrate failure
Mg ZE41A-T5	4551	23.2	Adhesion to substrate failure
Mg ZE41A-T5	4508	23.0	Adhesion to substrate failure
Mg ZE41A-T5	4621	23.5	Adhesion to substrate failure
AI C355-T6	3583	18.2	Adhesion to substrate failure
AI C355-T6	4057	20.7	Adhesion to substrate failure
AI C355-T6	5039	25.7	Adhesion to substrate failure
AI C355-T6	3886	19.8	Adhesion to substrate failure
AI C355-T6	4727	24.1	Adhesion to substrate failure
AI C355-T6	5492	28.0	Adhesion to substrate failure

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

The Nation's Premier Laboratory for Land Forces

U.S. ARMY RDECOM®

Triple Lug Shear

Cold Spray AI 6061 on Cast Mg ZE41A-T5 and Cast AI C355-T6 Triple Lug Shear Test Results

Substrate	Max Load (lbf)	Ult. Shear Stress (ksi)	Failure Mode
Mg ZE41A-T5	4653	24.8	Substrate failure
	4484	23.9	Substrate failure
	4493	24.0	Substrate failure
Mg ZE41A-T5	4654	24.8	Substrate failure
	4553	24.3	Substrate failure
	4473	23.9	Substrate failure
Mg ZE41A-T5	4488	23.9	Substrate failure
	4413	23.5	Substrate failure
	4301	22.9	Substrate failure
AI C355-T6	4218	22.5	Adhesion to substrate failure
	4410	23.5	Adhesion to substrate failure
	4654	24.8	Adhesion to substrate failure
AI C355-T6	4842	25.8	90% adhesion 10% cohesion
	5049	26.9	75% adhesion 25% cohesion
	5104	27.2	75% cohesion 25% adhesion
AI C355-T6	4715	25.1	50% adhesion 50% cohesion
	5088	27.1	25% substrate 75% adhesion
	4966	26.5	Adhesion to substrate failure

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

RDECOM®

U.S.ARMY

Future Work

- Evaluation of full adhesion strength for bronze, CrC NiCr, and AI 5056 cold spray deposits on various substrates
- Further testing to identify the lowest deposit thickness required for production of cold spray neck and cap
 - 0.5" thickness deposit currently requires long spraytimes, powder, and process gas
- Establish glueless adhesion test as a MIL specified adhesion test for cold spray or addendum to ASTM C633
- Design further tests to accommodate structural repair requirements such as tensile specimens formed in the build direction

Acknowledgments

This research was supported in part by an appointment to the Postgraduate Research Participation Program at the U.S. Army Research Laboratory administered by the Oak Ridge Institute for Science Education through an interagency agreement between the U.S. Department of Energy and USARL