

Prediction of Particle Impact Conditions via CFD Process Modeling

ARL Cold Spray Modeling Program

Ozan Ç. Özdemir, Christian A. Widener

Arbegast Advanced Materials Processing and Joining Laboratory South Dakota School of Mines and Technology

06/22/2016

Approved for Public Release

& TECHNOLOG

Program Objective

To generate a model or a series of models to predict the resulting mechanical properties of a deposit sprayed from a new material, based on the process parameters used produce the deposit.

Outline of Work at SDSM&T

- Estimation of effects of He/N_2 mixing through 1D model
- Produce particle splat samples and model process
- Accurate estimation of particle impact conditions through CFD
- Effects of particle injection imperfections through CFD
- Provide accurate input for solid mechanics models

& TECHNOLOGY

Today's Outline

- 3D case study: Powder feeder line misalignment
- Controlling particle impact velocity & temperature

Effects of Powder Feeder Line Misalignment

- Experimental velocity measurements reveal lower velocity particles than expected...
- Imperfections?
 - Hose assembly
 - Nozzle assembly
 - Feeder tube assembly
 - Powder feeder assembly
- Introduce imperfections to evaluate process sensitivity
 - Starting with feeder tube alignment

Can we simulate like real particle exit velocities by introducing imperfections?

Signs of Misalignment

- Accelerated wear in the nozzle
- Reduction in particle velocity
- Increase in velocity variation

Aligned Powder Feeder Tube

SCHOOL OF MINES & TECHNOLOGY

Misaligned Powder Feeder Tube

Physical Model

Gas Model

- Nitrogen (ideal gas)
- Energy equations
- k- ϵ turbulence model
- Hot gas input
 - 3.85 MPa & 360 °C
- Cold gas input
 - 3.85 MPa & 50 °C
- Outlet
 - Atmospheric conditions
 - 0.101 MPa & 20 °C
- Gas flow rate
 - 1150 g/min

Particle Injection

- Lagrangian particles (DEM optional)
- Input Microtrac data for d_p
 - Real particle size distribution
- Drag forces
- Lift forces
- Two-way coupled flow (Gas/Particle)
 - Momentum & Energy
- Particle injection rate: 12.4 g/min

Accounting for Losses from Particle/Nozzle Interactions

• Nozzle wall impact angles assumed*

< 30°

- Coefficient of friction*
 - Coulomb's law of dry friction (0.33)
- Tangential coefficient of restitution*
 - $e_t = 0.7$
- Normal coefficient of restitution*
 - $e_n = 0.8$

^{*}Wu, C.Y., Thornton, C., Li, L.Y. Rebound Behavior of Spheres During Elastic-Plastic Oblique Impacts. International Journal of Modern Physics B. 22 (**9, 10, 11**). 2008. *pp. 1095-1102*.

Simulation

SCHOOL OF MINES & TECHNOLOGY

Model Validation

	Mean	Std. Dev.	Variance	Min	Max
	[m/s]	[m/s]	[%]	[m/s]	[m/s]
Aligned Tube Simulation	633	74	12%	432	809
Misaligned Tube Simulation	623	92	15%	430	852
TECNAR Measurement	627	80	13%	260	932

SCHOOL OF MINES & TECHNOLOGY

SDSM&T

Effects of Misalignment on Particle Impact

Approved for Public Release

SDSM&T

Spray Radius & Particle Angle with Measurement Plane

15

Particle Nozzle Interactions

Aligned Feeder Tube Scenario

Misaligned Feeder Tube Scenario

Effects of Misalignment on Nozzle Wear

- Reduction in nozzle expansion ratio
 - Nozzle throat wear
 - Drop in particle velocity
 - Reduction in the amount of
 - Inefficient increase in gas consumption
- Increase in nozzle expansion ratio
 - Wear in diverging section
 - Colder particles
 - Particles possibly impacting too substrate too fast
 - Causing erosion

Controlling Particle Impact Conditions

- Control impact velocity for an average size particle $(22 \ \mu m)$
- Help control particle bonding mode on substrate
- Use Al6061
- Use 1-D *He-N*₂ mixing model

Al 6061 Properties					
Density (kg/m^3)	2700				
Ultimate Tensile Strength (MPa)	310				
Melting Temperature (°C)	650				
Thermal Conductivity ($W/m ^{\circ}K$)	170				
Specific Heat ($J/kg \circ K$)	900				

SDSM&T

22 µm Particle Impact Velocity

		Particle Impact Velocity Contour [m/s]							
Impact Velocity Ranges		600	82	5	1050		1275	1	500
1 2 8									
		T [C] \\ P (MPa)	2.38	2.94	3.51	4.07	4.64	5.21	5.77
	0%	250	595	603	609	613	617	620	623
595 – 700 m/s	Не	300	620	628	634	639	643	647	650
		350	644	652	659	664	669	672	676
		400	666	675	682	688	693	697	700
	T [C] \\ P (MPa) 2	2.38	2.94	3.51	4.07	4.64	5.21	5.77	
741 005 /	50%	250	741	754	765	773	780	785	790
/41 – 885 m/s	He	300	770	785	796	805	813	819	824
	TIC	350	798	813	825	835	843	849	855
		400	824	841	854	864	872	879	885
		T [C] \\ P (MPa)	2.38	2.94	3.51	4.07	4.64	5.21	5.77
	75%	250	876	898	914	928	939	948	956
876 – 1065 m/s		300	909	932	950	964	976	986	995
	пе	350	939	964	982	998	1011	1022	1031
		400	968	994	1014	1030	1044	1056	1065
		T [C] \\ P (MPa)	2.38	2.94	3.51	4.07	4.64	5.21	5.77
	100%	250	1156	1198	1233	1261	1286	1307	1326
1136 - 143 / m/s	He	300	1193	1237	1273	1304	1330	1353	1373
		350	1228	1274	1312	1344	1371	1395	1416
Approved for Public Release		400	1261	1309	1348	1381	1410	1435	1457

19

- 1. Capability of adjusting helium & nitrogen
- 2. 1D modeling of mixed gas spray conditions
- 3. Controlling particle impact conditions

- Assumptions
- 1. Constant nozzle geometry
- 2. Constant standoff distance
- Pressure is high enough to maintain supersonic flow exiting the nozzle

Sample Impact Velocity Variance Study Setup

- The desired particle velocity variance can be achieved by adjusting gas mixing ratio
- Recommended experimental setup:
 - Change impact velocity holding impact temperature constant
 - Varying pressure, temperature, gas mixing ratio for control

INPUTS				OUTPUTS			
Test No	He Mix	Gun Pres.	Gun Temp. η		Impact Vel.	Impact Temp.	
	[%]	[MPa]	[°C]	V _{im} / V _{cr}	[m/s]	[°C]	
1	0	5.21	300	0.91	647	122	
2	50	2.38	350	1.12	798	121	
3	75	2.38	400	1.36	968	120	

