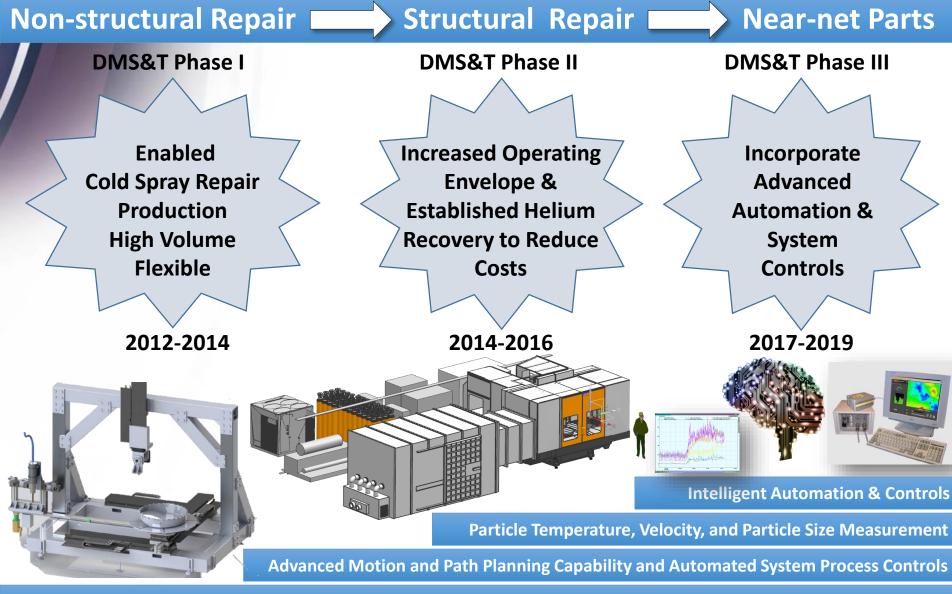
Cold Spray System Reliability and Advancement for DOD

Presenter: Rob Hrabe

OSD Mantech Phase III: Cold Spray Additive Manufacturing (AM) and Structural Repair (SR) Technology

Defense-Wide Manufacturing Science & Technology (DMS&T) Program

PM: Victor Champagne Org: ARL RDRL-WMM-C Location: Aberdeen Proving Ground, MD Email/Phone: <u>victor.k.champagne.civ@mail.mil</u> 410-306-0822



WHEN YOU'RE DEAD, YOU DON'T KNOW YOU'RE DEAD. IT'S ONLY DIFFICULT FOR OTHERS. IT'S THE SAME WAY WHEN YOU'RE STUPID.

ARL Vision for Cold Spray Development

Ensure Predictable, Repeatable and Reliable Material Properties/integrity of AM and Structural Applications

Government / COE Team Members

Government PM & Technology Transition Lead Victor Champagne, Technical Team Leader Innovative Materials & Processing Team US Army Research Laboratory ATTN: RDRL-WMM-C, BLDG 4600 Aberdeen Proving Ground, MD 21005-5069

Phone: 410-306-0822, Email: victor.k.champagne.civ@us.mil

NAVSEA

Tom Stamey C/260M, PSNS & IMF 360-476-6770 thomas.stamey@navy.mil Seawolf and 688 Class Subs

John Albrecht IMF Bangor Process Imp Office john.albrecht@navy.mil 360-315-2743

NAVAIR

Frederick Lancaster, Lead Corrosion & Wear NAVAIR, Patuxent River MD Ph: 301-342-8076 frederick.lancaster@navy.mil

Distribution Statement: Approved for P

ARMY

Michael Kane Army Aviation & Missile Cmd Redstone Arsenal, AL Ph: 256-313-8727 michael.john.kane@us.army.mil

Mark Velazquez and Wesley Cass SAFER PM Corpus Christi Army Depot Ph: 361-961-6236 mark.a.velazquez@us.army.mil

F. Rios Merritt Utility Helicopter Program Office Redstone Arsenal, AL Ph: 256-842-1429 Fernando.Merritt@PeoAvn.Army.Mil UH-60, Prog Dir LTV

AIR FORCE

Mike Froning AFLCMC/EZPT Wright-Patterson AFB, OH Ph: (937) 255-8679 michael.froning@us.af.mil

Frank Peavy Global Strike Command Barksdale AFB LA Ph:

frank.peavy.1.ctr@us.af.mil

Tosh Farr Power Systems Engineer Hill AFB UT Ph: 801-586-0518 tosh.farr@us.af.mil F-15, F-16,

OEM Support

Kenneth W. Young Materials Engineering Philadelphia Rotorcraft 610-591-6470 kenneth.w.young@boeing.com

Mike Nicholas, AH64 Materials & Processes Tech **BR&T Rotorcraft Systems** Cell: 480-395-1032 **Roles:**

- Component Engineering
- Requirements Development
- Qualification Engineering

Contractor Team Members

Contracting & Technical Lead

Rob Hrabe H. F. Webster Engineering Services Ph: 605-209-5196 Email: robhrabe@msn.com

Honeywell

OEM Support

Daniel Greving Director, Global Repair and Overhaul Eng Honeywell | Aerospace, AR 602-402-3918

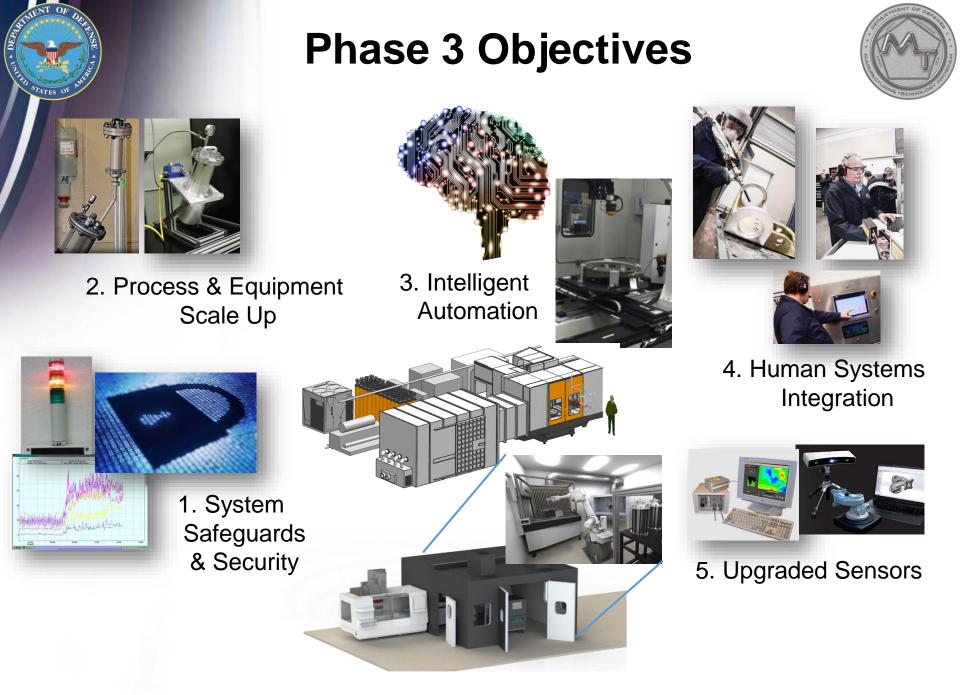
daniel.greving@Honeywell.com

Equipment Support Dr Christian Widener **VRC Metal Systems** Ph 605-716-0062 christian.widener@vrcmetalsystems.com **Role:** Automation & motion systems

MOC **Transition Support**

Randy Herman Integrated Support Services Moog Inc. Ph: (701) 532-3501 rherman@moog.com

Roles:


- Cold Spray Production
- Qualification Operations

Aaron Nardi **Integrated Support Services** Ph: (860) 841-8337 nardiat@utrc.utc.com

Roles:

- Research, Development
- Test

Approach

1.System Safeguards and Security

- Enhanced Data Logging and Storage Capabilities
- Haptic/Audible & Visual Alarms for Process Variables & Tolerances
- Enhanced Data Control & Security for Control Programs and Recipes

2. Process Equipment Upgrades

- Closed Loop Powder Feed System, High Flow Heater, Gas Train Control, and Powder Processing and Quality Control
- Increased Portability, Reliability, & Repeatability of Spray Parameters

3.Human Systems Integration

– Enhanced HMI Screens, Built-in Troubleshooting, System Ergonomics

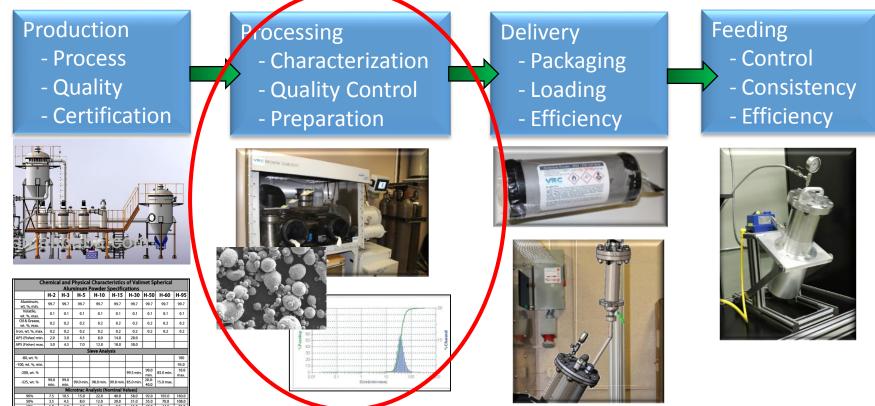
4.Upgraded Sensors

- Expand 3-D Scanning and Reverse Engineering Capabilities
- Include In-Process Verifications for Quality Control and Tolerancing

5.Intelligent Automation

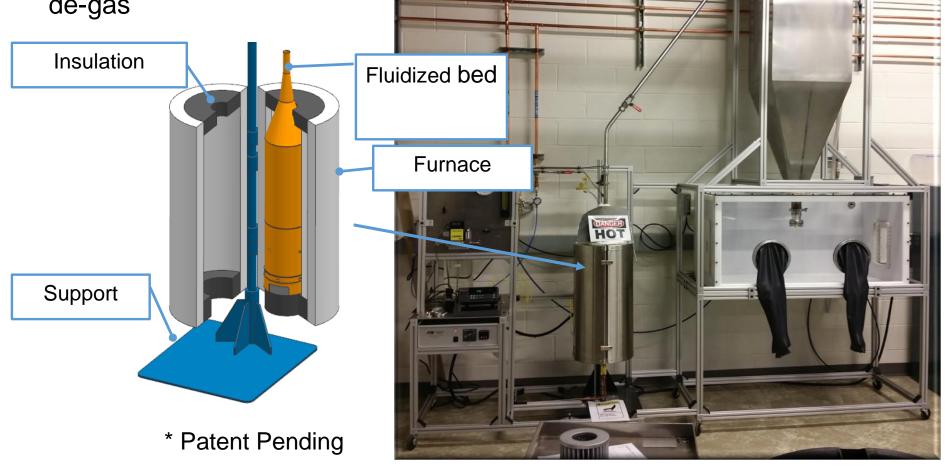
- Autoset Functions & Standard Work to Reduce Operator Workload
- Path Planning & Control Layer by Layer Path Adjustment

Distribution Statement: Approved for Public Release; Distribution is unlimited


Year 2

Feedstock Control

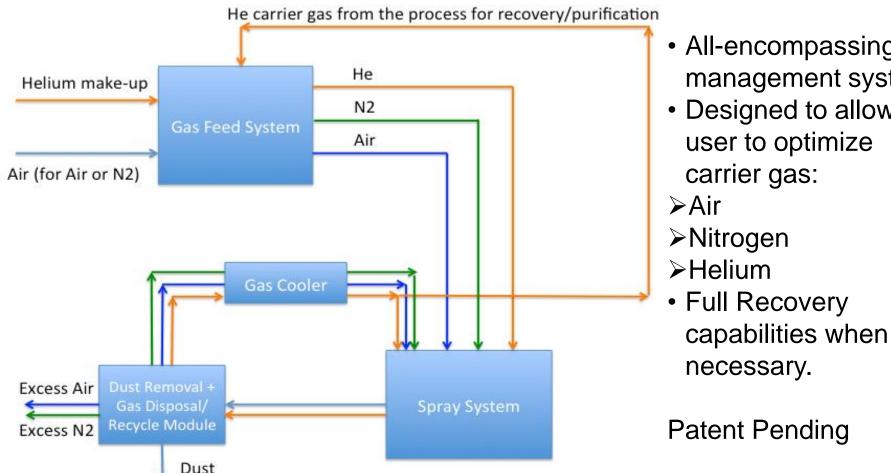
Powder Delivery Chain


Bottom Line: Structural repair requires equipment that can control the process from beginning to end

WEBSTER Processing Scale Up

Prototype Production Fluidized Bed System United Technologies Reduces labor cost Research Center

- Classification
- Heat treat/quench/ de-gas
- Reduces HT effects such as sintering

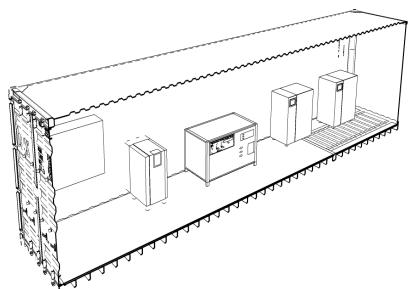


Helium Recovery

Developments

QuantumPure CS-TGMTM **Proprietary Total Gas Management System**

- All-encompassing gas management system
- Designed to allow the user to optimize carrier gas:



Helium Recovery

QuantumPure CS[™] Stand-Alone Gas Management System

Specifications & Capabilities

- Containerized, independent, plug-and-play system
- Purities of output Helium >95+%
- Flowrates: 0.5 4 m³/min (20 150 scfm)
- Storage Pressures up to 186 bars (2700 PSI)
- Fully automated system with high recovery rate
- Wide range of input purities from 0% to 100%.

QuantumPure CSTM

Stand-Alone Gas Management System

Economics

- 90% of Helium saved /year
- =~ \$800K (2M cf/year @\$0.4/cf)
- Total investment: \$500-700k
- Minimal Operating expenses

- Saves inside lab space,
- Reduces noise pollution
- Lower installation costs
- ROI: ~1Year

In Effect

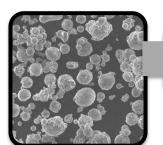
MIL-STD-3021 "Materials Deposition, Cold Sprav"

In Work

MIL HDBK –xxxx (Similar to MIL-HDBK-17-1F) POCs: Sophia Lauwers, Gehn Ferguson Expected Completion: Dec 2018

MIL-DTL-xxxx "Powders for Cold Spray Deposition." (will supersede MIL-DTL-32495) POC: Dr Baillie McNally, Gehn Ferguson Expected Completion May 2018

• Overall POC: Richard Squillacioti, ARL Specs & Stds



MIL-DTL-xxxx "Powders for Cold Spray Deposition."

- Currently in Data Collection Phase
- Materials included (unprocessed/processed):
 - Aluminum CP, HP, 5056, 6061, 7075
- Pure Powders:
 - Titanium, Nickel, Niobium, Copper, Tantalum, Zinc
- Carbide based blended powders, CrC-NiCr, CrC-Ni
- Nickel-chrome based super alloys: Inc 625 & 718
- Steel and steel-based alloys: 316 SS
- Bronze

Specs & Standards

MIL-DTL-xxxx "Powders for Cold Spray Deposition."

Qualification requirements (each will include ASTM Std):

- Chemical composition
- Max non-metallic impurities (Oxygen content)
- Particle size distribution
- Quality
 - Blended, dry, free flowing, free from foreign materials, clumps & agglomerates
- Min flowability value

- Spray-ability:
 - \circ Metallographic coupon
 - \circ Bond button
 - \circ Visual inspection
 - \circ Images of powder
 - \circ Maximum porosity
 - \odot Bond strength
- Mechanical properties

 Tensile properties
 Surface hardness

Specs & Standards

MIL-DTL-xxxx "Powders for Cold Spray Deposition."

- ASTM Standard references to be used for:
 - Test methods
 - Packaging details
 - Intended use of the materials
 - Shelf-life/storage of powder

Currently collecting data for chemical composition, oxygen content, and particle size distributions of the powders.

Summary

To have systems capable of additive manufacturing & structural repair using cold spray we're defining:

- Integrated process control technology
- Automation Systems with the unique motion characteristics required to achieve structural properties
- Powder processing and handling equipment capable of processing the quantities and quality of powder needed to produce structural repairs
- Specifications and Standards
- Cost Reduction & Improved Readiness

Cold Spray System Reliability and Advancement for DOD

Presenter: Rob Hrabe

OSD Mantech Phase III: Cold Spray Additive Manufacturing (AM) and Structural Repair (SR) Technology

Defense-Wide Manufacturing Science & Technology (DMS&T) Program

PM: Victor Champagne Org: ARL RDRL-WMM-C Location: Aberdeen Proving Ground, MD Email/Phone: <u>victor.k.champagne.civ@mail.mil</u> 410-306-0822

Objective: Develop Systems Capable of Additive Manufacturing (AM) & Structural Repair (SR) using Cold Spray Technology

Develop integrated process control technology

Provide in-situ process control, monitoring, and recording
 Pressure, temperature, standoff, particle velocity, flow rate, deposit efficiency, motion path & angle
 Ensures integrity of AM & structural repair processes

 Develop Automation Systems with the unique motion characteristics required to achieve structural properties
 Achieve wrought properties in AM & cold spray repairs

Develop powder processing and handling equipment capable of processing the quantities and quality of powder needed to produce structural repairs

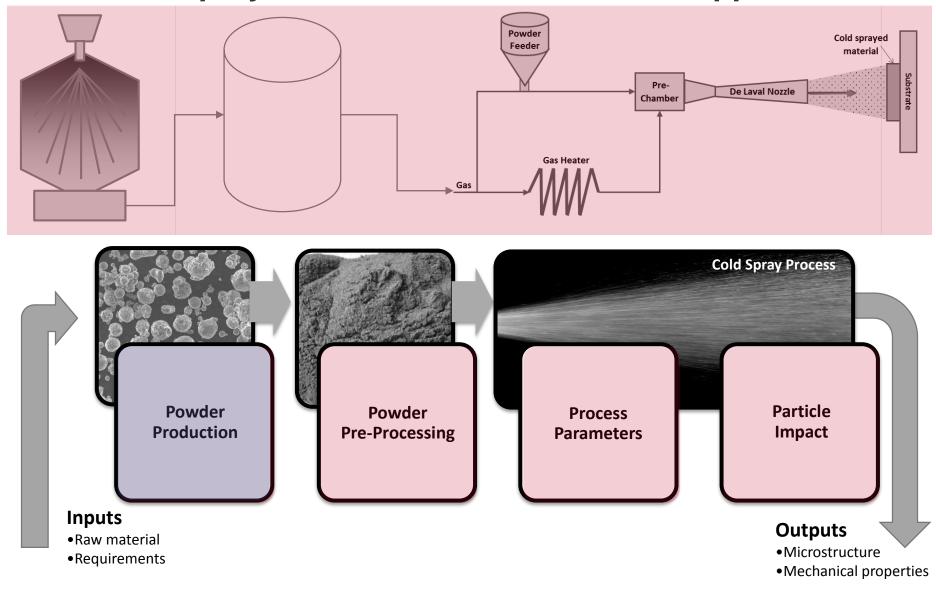
Benefit to the defense industrial base

- Establish new additive mfg and structural repair capability
- Reduced cost, cycle time, scrap, improved readiness
- Prepare the way ahead for multiple repair technologies & multifunctional work stations that incorporate advanced materials processing.
- Structural repairs are available but need automation
- Reduces cost and timeline associated with structural cold spray repairs by improving efficiency and repeatability

Allows for Near-Net Forming

Problem: Ensuring Integrity of Additive Manufacturing (AM) & Structural Repair (SR) Cold Spray Repairs

Structural additive manufacturing and repair feasibility proven in previous development efforts


- Requires process control beyond current equipment capabilities
 - Powder has to be processed to highly stringent specifications
 - Rudimentary fluidized bed systems are capable of producing small quantities but scale up has presented challenges with consistency of feedstock resulting in inconsistent properties
 - Post processing handling and control of feedstocks needs to be addressed to ensure properties are consistent
 - Cold spray systems need to incorporate process control and monitoring to ensure the end product meets specifications
 - Post cold spray NDI techniques can't fully evaluate part integrity
- Requires unique motion control and path planning to achieve structural properties not available in current robotic systems
 - Layer to layer in-situ control needs to be built into the system

Approach

Cold Spray Feedstock Powder Holistic Approach

