Determination of ultrahigh strain rate impact hardness
of metals by energy dissipation method ARL
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Motivation & Aim

Study of impact dynamic material properties, material deformation and
critical velocities help us in understanding the cold spray process in a better
way.

Energy Dissipation At Low Strain Rates
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Maximum residual depth of
indent larger for Aluminum
than Copper, indicating Al to
k be a softer material than Cu./

,,’ copper as compared to
Material’s properties and deformation dynamics are strain-rate-dependent. / = ‘
Studying microscopic hardness of materials under both low strain rate and
high strain rate can extend our knowledge of the rate-dependent

mechanisms contributing to plastic deformation processes and high strain
rate strength of metals

Fig. 3 Nanoindentation results (a) Load vs displacement

curve for Cu and Al samples loaded with spherical indenter with
Looo Maximum load 45mN applied.). (b) Cu and Al substrates after

Advanced Laser Induced Proiectile Impact Test (a-LIPIT) Depth (nm) nanoindentation using a diamond spherical indenter of 20 pm.

Ultra High Strain Rate Micro-Ballistic Impacts: a-LIPIT
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Low Strain Rate Spherical Nanoindentation
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The difference in
energy values in quasi
static and dynamic
indentation can be
attributed to the strain
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| | . The dynamic and quasi-static behavior of aluminum and copper is quantified using the
Fig. 2 Nanoindentation (a) Illustration of a spherical nano-indenter (b) Load wvs micro-ballistic characterization and spherical nanoindentation.
displacement curve for an elastic-plastic sample loaded with spherical indenter with

maximum load P applied. After complete unloading, the graph shows a residual
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impression of height h..

Micro impact hardness Is strain rate dependent.

Aluminum shows greater strain rate sensitivity than that of copper.
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