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By preprocessing powder, can achieve CS strength and ductility = wrought

Spoiler Alert



Overview of CS Process
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Cold spray (CS) is a deposition/consolidation process in which powder particles are 
accelerated by preheated, high-pressure carrier gas as the gas expands in the 

divergent section of a nozzle.  

Applications for Cold Spray:

 Repair & refurbishment

 Wear- & corrosion-resistant coatings

 Additive Manufacturing



Overview of CS Process
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Cold spray (CS) is a deposition/consolidation process in which powder particles are 
accelerated by preheated, high-pressure carrier gas as the gas expands in the 

divergent section of a nozzle.  

Key Parameters:

 Gas pressure (1 to 4 MPa)

 Gas temperature (up to 900°C) 

 Particle velocity (300-1400 m/s)

 Particle size (typically 5–50 μm)



Background
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T. Van Steenkiste, J. Smith, R. Teets, Surf. 
Coat. Technol. 154 (2002) 237-252.

K. Kim, M. Watanabe, S. Kuroda, Surf. Coat. Technol. 204 (2010) 2175–2180. 

M.R. Rokni, C.A. Widener, C.A. Crawford, Surf. Coat. Technol. 251 (2014) 254-63.

CS imposes high strains in 
particles, yielding a 

heterogeneous microstructure



Post-CS heat treatment- Microstructure
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 Well-defined, straight grain boundaries – equi-axed grains

 Unlike heterogeneous microstructure of as-deposited material

MR Rokni, CA Widener, VK Champagne, GA Crawford, Surf. Coat. Technol. 276 (2015) 305-315 

450°C for 45 mins

Post-processing CS deposits can 
homogenize microstructure



Post-CS heat treatment- Properties
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Post-deposition anneal can increase ductility and strength of CS deposits. 

 Post-CS anneal can be unacceptable from a practical perspective.
 Component size or base material 
 Specific production process

Can we obtain similar properties by 
preprocessing the powder? 

MR Rokni, CA Widener, VK Champagne, GA Crawford, SR Nutt, Surf. Coat. Technol. 310 (2017) 278-285

“Review of Particle Deformation-Structure-Properties relations in High Pressure Cold Spray” 
R Rokni, C Widener, R Hrabe, V Champagne, and S Nutt, J Thermal Spray Tech 1-48 June (2017) DOI

http://dx.doi.org/10.1007/s11666-017-0575-0


Motivation/Objectives
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Determine effects of powder preprocessing (degassing) on microstructure and
properties of 5056 Al deposits

(1) Evaluate microstructure and mechanical properties of preprocessed 5056
Al alloy powder

(2) Evaluate microstructure and mechanical properties of the resultant deposit,
benchmark to wrought 5056

(3) Determine causes of observed variations in microstructure and mechanical
properties



Experimental procedure
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(1) Microstructure & mechanical properties of pre-processed 5056 Al powder

• LM, SEM, EBSD, and TEM

• Nanohardness (5 times loading)

(2) Microstructure & mechanical properties of resultant CS deposit

• LM, SEM, and EBSD

• Nanohardness

• Microtensile testing

 L, LT, ST, and 45°
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Why 5056 Al?
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 Low density, cost

 Ballistic properties

 Weldability

 Corrosion resistance

These features allow consistent design/production of 
lightweight, reliable, and cost-efficient DoD parts/systems.



Powder production 
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1. Melting in vacuum
2. Atomization by gas jet
3. Rapid quenching
4. Powder collection

Solute segregation at GBs

Typical gas-atomized Al powder

Major concern with feedstock 
gas-atomized alloy powders



Preprocessed powder
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 Spherical particles

 Particle sizes ~24 µm (± 8 µm)

 Smaller particles agglomerate around 
larger particles

 Surface grain structure  1-4 µm

 No Mg segregation on particle 
surface

20 𝝁m 20 𝝁m 10 𝝁m

Point/Wt% O Mg Al

1 2.47 9.15 88.38

2 2.45 9.00 88.55

3 2.61 9.30 88.09

4 2.50 8.90 88.60

5 2.81 9.30 87.89

6 2.60 9.18 88.23

7 2.60 8.78 88.62

8 2.75 8.72 88.53

9 2.12 9.29 88.59

10 2.33 8.78 88.99

STDEV.P 0.19 0.22 0.30

AVE 2.52 9.04 88.45



Preprocessed powder- degassed 
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 Uniform concentration of Mg

 No GB segregation within particle

 Confirmed with EDS mapping, line 
profiles

 Fewer pores compared to typical gas-
atomized powder

20 𝝁m 20 𝝁m 10 𝝁m

Typical structure of gas-atomized particle

Degassed gas-atomized particle structure

Mg Al



Preprocessed powder- degassed
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 Different types of interior grain structures

• Large particles:

 Similar grain structure as 
surface

 Abnormal grain growth during 
degassing

• Small particles:

 All with abnormal grain growth

 Same grain structure under TEM

 Nanohardness of 0.66 ± 0.04 GPa

B. Ahn, A.P. Newbery, E.J. Lavernia, S.R. Nutt, Effect of degassing temperature 
on the microstructure of a Al–Mg alloy, Mater. Sci. Eng. A 463 (2007) 61–66

10 ! m



Deposit microstructure
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 Severe deformation of spherical particles

 No evidence of porosity

 No crystallographic texture

 Light deformation in the particle interiors

 Recrystallization at interfaces (PPB’s)

 More recrystallization in peripheral regions

 Enhanced bonding at these regions (?)

Peripheral
Region 

Impact Zone



Deposit properties
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ST LT
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Lines	to	Indicate	
Layering	Direction

Short	Transverse

Specimen Thickness	(mm) Initial	Guage	length	(mm) Final	Gauge	length	(mm) %El Peak	Load	(lbf) UTS	(Ksi)

L1 0.5 1 1.055 5.52 46.00 59.36

L2

L3 0.5 1 1.053 5.34 46.30 59.80

L4 0.5 1 1.062 6.21 46.95 60.58

L5 0.5 1 1.055 6.07 45.98 59.11

L6 0.49 1 1.073 6.19 47.04 60.92

5.87 46.45 59.95

5.87 46.45 59.95

LT1 0.48 1 1.029 2.91 44.77 60.17

LT2 0.47 0.985 1.021 3.64 43.49 60.61

LT3 0.48 1 1.028 2.78 43.49 57.90

LT4 0.47 0.99 1.020 3.05 44.00 60.46

LT5 0.48 1 1.032 3.21 45.66 61.37

3.19 44.34 60.10

Specimen Thickness	(mm) Initial	Guage	length	(mm) Final	Gauge	length	(mm) %El Peak	Load	(lbf) UTS	(Ksi)

ST1 0.47 1 1.013 1.26 134.02 41.36

ST2 0.48 1 1.017 1.73 166.67 50.36

ST3 0.48 1 1.019 1.91 162.02 49.95

ST4 0.48 0.99 1.016 1.65 164.87 48.97

ST5 0.5 1 1.031 1.87 163.31 49.54

1.68 158.18 48.04

1.68 158.18 48.04

45-1 0.48 1 1.037 3.65 175.51 53.03

45-2

45-3 0.48 1 1.039 3.92 167.10 50.49

45-4 0.47 1 1.045 4.54 167.35 51.64

45-5 0.48 1 1.048 4.81 182.56 55.16

45-6 0.49 1 1.056 4.93 183.61 55.96

4.37 175.23 53.26

Red highlights: sample broke during the setup.



Deposit properties
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 Wrought strength in almost all directions

 Wrought El in L direction

 Minimum El and UTS in ST direction

 Average properties in 45° direction
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Fracture Surfaces
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ST LT

L

Spray	Direction

Longitudinal
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Layering	Direction

Short	Transverse

ST samples fracture at 
particle/particle 
interfaces (PPB’S)

L samples fracture
mostly through 
particles



Causes of property variations
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 Bonding occurs initially at the periphery
of the contact zone

 Consistent with large-scale impact tests
and simulations

 Maximum hydrostatic pressure at the
center of impact

Potential defect site 

known from models

Superior properties in Longitudinal directions, 
inferior in Short Transverse directions.

 Transition of bonding mechanism from
mechanical interlocking to metallurgical,
yielding ~wrought mechanical properties,
through recrystallization at highly strained
interfaces

5 mm



Conclusions
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1) Preprocessing powder homogenizes solute distribution.

2) With proper preprocessing, strength and ductility = wrought
achievable.

3) Strong bonding at periphery of contact zone because of intense
shear ➙ extensive recrystallization.

4) Yields superior properties in longitudinal and 45° directions.

5) Insights gained ➙ optimization of preprocessing treatments for
cold spray deposits.
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Thank You
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Questions?

“Review of Particle Deformation-Structure-Properties relations in High Pressure Cold Spray” 
R Rokni, C Widener, R Hrabe, V Champagne, and S Nutt, J Thermal Spray Tech 1-48 June (2017) DOI

http://dx.doi.org/10.1007/s11666-017-0575-0


Thank You
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