Welcome to WP TCh Ctor THE PRESIDENT

"To discover, develop, and deploy new materials twice as fast..."

- President Obama, 2011

INE

"The lengthy time frame for materials to move from discovery to market is due in part to the continued reliance of materials research and development programs on scientific intuition and trial and error experimentation. Much of the design and testing of materials is currently performed through time-consuming and repetitive experiment and characterization loops. Some of these experiments could potentially be performed virtually with powerful and accurate computational tools, but that level of accuracy in such simulations does not yet exist."

Materials Genome Initiative (2011) McNally,

Meeting Societal Needs

WhiteHouse.gov/MGI (2011)

Cold Spray Through Process Model

- Raw material
- Requirements

Powder Production Modeling: Solidification

Heat Transfer Model Gas Atomization Process

Relationships between:

- Cooling Rate & Particle Size
- Cooling Rate & Grain Size ↓
- Particle Size & Grain Size

Relationship Grain Size and Cooling Rate:

Predictive Phase Modeling

Powder Pre-Processing

Mg₂Si TTT Diagram

Model Development

Inputs

- Raw material
- Requirements

Mechanical properties

• Microstructure

Additive Hardness Model

Al 6061 Powder Precipitates

2

1

Phase	Wt%	Composition	
Al	96.5	Al + trace Zn	
Mg2Si	1.41	Mg ₂ Si	2
Al7Cu2M	0.76	Al ₇ Cu ₂ Fe	1
Alpha	0.65	Al ₄₇ (Fe,Mn,Cr) ₁₁ Si ₅	
E	0.23	$Al_{18}Cr_2Mg_3$	
Al3Fe	0.18	Al ₃ (Fe,Cr)	1
Al13Cr4Si4	0.17	Al ₁₃ Cr ₄ Si ₄	
Al3M	0.06	Al ₃ Ti	

STEM DF Image, scale bar 500 nm

STEM DF Image, scale bar 100 nm

0

Experimental Hardness Measurements

Nanohardness measurements of Al 6061 powder

Model vs. Experimental Results

- Model predictions vs. experimental hardness (previous slide).
- Model predictions converted from yield strength.
- Yield strength values used as input into the particle impact model, below.

Cold Spray Process Modeling

Velocity and Temperature Profile for Gas and Powder from Nozzle to Substrate

Influence of Process on Material Properties

Schematic time

Powder Temperature [°C]

LYTEC/

Particle Impact Modeling

Output from Powder Production & Powder Pre-Processing models are used as input to the Particle Impact Model

 $\sigma_{_{YS}(d)} = \sigma_o + \Delta\sigma_{SS} + \Delta\sigma_{mic} + \Delta\sigma_{ppt}$

 $\sigma_f(d) = [A + B\varepsilon^n][1 + Cln\dot{\varepsilon}^*][1 - (T^*)^m]$

• Raw material

• Requirements

Outputs

• Microstructure

Mechanical properties

Multiple Particle Video

Multiple Particle Video

Deformed Shape Qualitative Validation

Visual comparison of deformed particle to simulation output

______S0 μm___

Several researchers have taken images of individual deformed particles

- Simulate scenario described in research
- Compared simulation results to images of deformed particles

King, P.C., S.H. Zahiri, and M. Jahedi, *Microstructural refinement within a cold-sprayed copper particle*. Metallurgical and materials transactions A, 2009. **40**(9): p. 2115-2123.

Huang, R. and H. Fukanuma, *Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits.* Journal of thermal spray technology, 2012. **21**(3-4): p. 541-549. **14**

Al 6061 Nanohardness

Spray Direction

Material Behavior

OFHC Copper particle, Al 6061-0 Substrate 600 m/s

316L stainless steel particle and substrate 800 m/s

Ti-6Al-4V particle and substrate 800m/s

Single Particle Normal Impact

Oblique and Two-Particle Impact

WPI's Vision for the Future

Aaron Birt ambirt@wpi.edu

Worcester Polytechnic Institute

U.S. Army Research Laboratory Contract #W911NF-10-2-0098

Danielle Belsito dbelsito@wpinetank You

Baillie McNally bamcnally@wpi.edu

LACS Modeling: Ongoing Work

- 1D Laser Heat Flux Model
- Provides Temperature of Substrate/Deposited Material Over Time

Powder Pre-Processing: Heat Treatment

Plasma Atomized Ti-6Al-4V Etched Powder

Additive Hardness Model: Additional Terms

$\sigma_{YS(d)} = \sigma_o + \Delta \sigma_{ss}(d) + \Delta \sigma_{mic}(d) + \Delta \sigma_{ppt}(d) + \Delta \sigma_{phase}$

- 33 micrometer
- Plasma Atomized
- Ti-6Al-4V

- 14micrometer
- Plasma Atomized
- Ti-6Al-4V