Fatigue Behavior of Cold Spray Coating

Atieh Moridi

Postdoctoral Researcher

Department of Materials Science and Engineering

amoridi@mit.edu

Cosmetic repair

Structural repair

Repair

• Procedure

- Nature of the damage
 - Low (local loss of material e.g. pore, crack, scratch, gas holes, pit, etc)
 - Medium (structural integrity is partially damaged, e.g. corrosion, wear)

Motivation

• Controversial results are available in literature.

	Material	Gas Type	Pressure (bar)	T(K)	Coating thickness (µm)	Specimen type	Surface roughness Rac m)	Increase/ Decrease in fatigue life
T.S. Price, et al. <i>J Therm</i> <i>Spray Technol.</i> 15 507-512 (2006).	Ti on Ti6Al4V	Не	30	300	120	Hourglas		Decrease- Delamination
J. Cizek, et. Al., <i>Surf Coat Technol</i> , 217 , 23-33(2013).	Ti on Ti6Al4V	He	16	533	700	nation	11.28	Decrease- Delamination
E. Sansoucy, et. al. J Therm Spray Technol, 16 (2007) 651-660.	Al-Co-Ce on AA2024-T3	Не	40	472	elam	Flor	-	Increase-No delamination
A Moridi et. al. On fatigue behavior of cold spray coating, MRS Proceedings 1650, mrsf13-1650- jj05-03	Al on Al 5052	N2		10	190	Flat	9.5	Slight increase- Delamination
	Al7075 on Al 5052	er (east	713	100	Flat	5.5	Increase-No delamination
	Al 6082 on Al 6082	mo	30	623	100	Hourglass	12.41	Increase-No delamination
Yandouzi, et. al. J Therm Spray Technol, 23 (2014)1281-90.	Al on Al2024	N2	17	500	500-600	Flat		Equal to the substrate

Fatigue Specimen

• Stress gradient effect

Rotating bending

Cantilever Flat Sheet

Residual Stress

- X-ray diffraction
 - Expensive, delicate apparatus generally limited to a laboratory
 - Sample must be polycrystalline
 - Only shallow (<0.025 mm) surface layer is measured

Fatigue Behavior of Coated Specimens

• Similar materials Al 6082 on Al 6082

Fracture Analysis

Hard on soft

Similar

Soft on hard

Fatigue Limit

- Precondition
 - No delamination
- Degree of Improvement
 - Residual stress
 - Pressure
 - Temperature
 - Coating and substrate material properties

• Fatigue limit
$$\begin{cases} \sigma = \sigma_{-1} \left(1 - \alpha \frac{\sigma_{rs(s)}}{\sigma_{u(s)}} \right) \left(1 + \sqrt{\frac{1600}{HV_c^2}} X^* \right)_s & \text{if } HV_c > HV_s \\ \sigma = \sigma_{-1} \left(1 - \alpha \frac{\sigma_{rs(s)}}{\sigma_{u(s)}} \right) & \text{if } HV_c = HV_s \end{cases}$$

Hybrid Treatment

Shot Peening

Intensity

Hybrid Treatment

- Intensity and Coverage
 - SP
 - SSP
- Order of treatments

Group	Description					
name						
AR	As received					
CS	Cold sprayed					
CS+SP	Cold spray followed by shot peening					
CS+SSP	Cold spray followed by severe shot peening					
SP+CS	Shot peening followed by cold spray					
SSP+CS	Severe shot peening followed by cold spray					

A Moridi, et al, Surf and coating technology, 2015.

Massachusetts Institute of Technology

Residual Stress and Fatigue Limit

Depth of compressed layer correspond to fatigue limit

SSP+CS: 10% and 26% with respect to CS and AR

Fractography

AR

SP+CS

Plii

CS

SSP+CS

CS+SSP

Acknowledgment

- Mario Guagliano, Polimi, Italy
- Ming Dao, MIT
- Mostafa Hassani-Gangaraj, MIT
- Simone Vezzu, Veneto nanaotech, Italy