Development of Chromium Coated Nuclear Fuel Cladding

Martin Sevecek, Anil Gurgen, Arunkumar Seshadri

Koroush Shirvan

Principal Research Scientist

Department of Nuclear Science and Engineering

June 14, 2017

Outline

- Accident Tolerant Fuel Overview
- ATF Materials
 - > Chromium Nuclear History
 - > ATF Requirements
- Cr-Coating Performance
 - ➤ Oxidation
 - ➤ Strength
 - > Thermal Hydraulics
- Concluding Remarks

Acknowledgements: Chrome Coated samples were provided by Victor Champagne (ARL), Matt Siopis (UTRC) and Aaron Nardi (UTRC). Funding for this work has been provided by DOE IRP contract # DE-NE0008416

Accident Tolerant Fuel Overview

- The Three Mile Island (TMI) and Fukushima accidents highlighted the weakness of Zirconium based cladding (Generation of Hydrogen).
 - In 2011, after Fukushima, US Congress mandated DOE to develop "melt-proof" nuclear fuel technology.
- According to DOE, the fuels with enhanced accident tolerance are those that, in comparison with the standard UO₂ Zr system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations.
 - Similar programs in UK, France, Germany, Russia, China, Japan, Korea and India are ongoing.
- US Utilities would like to use ATF safety benefits to reduce O&M costs of safety equipment & relax operational limits.

Weakness of Zirconium Based Cladding

 $Zr + 2 H_2O \rightarrow ZrO_2 + 2 H_2 + Energy$

ATF Cladding (Tube) Materials

- Maximum Allowable Temperature (Max Temp.)
 - FeCrAl Cladding limit is the most certain
 - ✓ Mo limit depends on its structural role

Concept	Max Temp.	Comments
FeCrAl Monolayer Clad	~1500 °C	Melting Point
Zirc with Cr Coating	~1330 °C	Eutectic Melt Point
Zirc with Mo + Cr Coating	~ 1900 °C	Depends on Thickness and Inner Layer Oxidation
Zirc with Mo + FeCrAl/Zr	~1900 °C	Depends on Thickness and Inner Layer Oxidation
SiC with SiCf Composite	> 2000 °C	Depends on Architecture
SiCf with Cr Coating	~ 1900 °C	Cr is there for Normal Ops.
Zirc with SiCf with Cr	~1900 °C	Melt point of Zr and Cr

Chromium History & ATF Requirement

- Why Chromium:
 - Corrosion Resistance
 - Not a strong neutron absorber (compared to Nickle)
 - Good strength and hardness (Protection against wear)
- Existing experience in nuclear reactor core
 - Chrome plating on nuclear control rods
 - > As part of structural steel
- ATF Coating Requirements beyond high temperature oxidation resistance
 - > Thickness: 20 μm (Wear Limit) to 50 μm (Economic Limit)
 - Scalability: 200,000 m² (2 mil ft²) per year for US market [6,400 km of tubing]
 - > Bond: Survive 5 years under 300°C, partial tension, neutron/gamma radiation.
 - Bonus: Allow for internal coating of the fuel rod cladding

500°C Steam Oxidation (2)

After 18 hours

Zr

500°C Steam Oxidation (2)

• Cr coating shows complete much lower corrosion rate compared to Zircaloy.

Pressure Tube Autoclave Testing

12 MPa @ 300 C water : 2 weeks no internal pressure & 2 weeks 25 MPa internal pressure

High Temperature Steam Oxidation (1)

- The sample was air quenched 2 times prior to break
 - Phase transformation of Zircaloy combine with its anisotropy.

High Temperature Steam Oxidation (2)

- Cr coating still survived after 90 min of 1200°C oxidation
- Even though Zirc was oxidized from the underneath, no delamination of Cr was observed.

Element	1 (%)	2 (%)	3 (%)	4 (%)
0	70.2	37.9	57.8	23.9
Cr	29.7	60.1	0.1	0.6
Zr	0.1	2.0	42.1	75.4

Cladding Water-Side Heat Transfer

Coating Strength

- Nano-Indentation across coating (top Zirc/Bot Cr) displayed the expected outcome of higher hardness at the interface.
 - > Ongoing 4-pt bend cyclic load tests will give us more insight

Reactor Performance

- Very little impact on fuel temperature and fuel rod internal pressure.
- The coating will go under higher stresses compared to base Zircaloy material

Plenum Pressure & FGR

18

0

M5_press

Zr4_press

M5 FGR

Zr4 FGR

----ZIRLO FGR

300

600

900

Time (day)

1200

ZIRLO_press

> Plasticity is expected (1-2%) in the coating

Fission

2

350

300

100

50

0

0

M5 @M5/Cr

Zr4 @Zr4/Cr

Cr @Zr4/Cr

300

600

900

Time (day)

Cr @ZIRLO/Cr

ZIRLO @ZIRLO/Cr

Cr @M5/Cr

1500

Concluding Remarks

ATF technology could provide a large incentive in terms of safety
Cr coating via Cold-Spray is a promising concept

Advanced materials and manufacturing R&D are keys for ATF success
Example: ODS and Nanostructured Metals

- Close collaboration of all organization involved in coating fabrication and nuclear R&D is critical for Accident Tolerant Nuclear Fuel Deployment.
 - > Lets Join Forces to Tackle the ATF Challenge Problem!

