

LASER ASSISTED COLD SPRAY

www.ipgphotonics.com

World Leadership in High Power Fiber Lasers

Outline

- IPG Systems Development Group
- Laser Assisted Cold Spray (LACS) Process
- LACS Results
- IPG LACS Next-Gen System Capabilities

IPG Photonics, the world's leading provider of fiber lasers, is developing a alternative solution for applying metal coatings to mechanical parts.

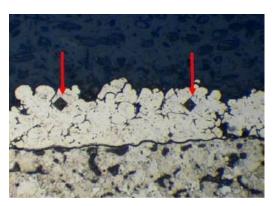
Laser Assisted Cold Spray (LACS) produces coatings having high adhesion and low porosity, without subjecting the part to high temperatures.

Using Nitrogen instead of Helium, LACS is a highly costeffective and efficient process.

LACS Wear-Resistant and Corrosion-Resistant Coatings

Moving equipment parts are subject to wear.

Repairs typically involve replacement, but newly manufactured parts are not always available.


LACS allows re-coating and re-building of parts with fast response and reduced costs.

Typical Coated Material Requirements

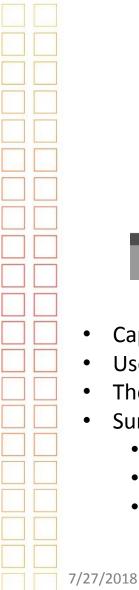
- Strong Adhesion
- High Tensile Strength
- Low Porosity
- Deposition Uniformity
- High Wear Resistance
- High Deposition Rate
- High Deposition Efficiency
- No Part Damage

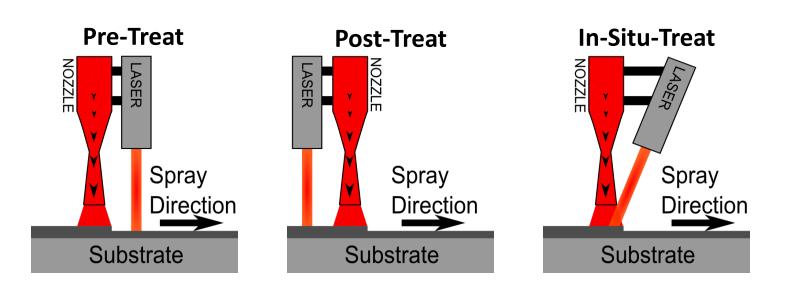
LACS coatings can be machined like original metal.

Laser Assisted Cold Spray - Process Thermal Processing Thermomechanical Mechanical Processing • ٠ Molten Deposition Solid State Deposition Solid State Deposition **High Velocity** Supersonic Velocity Supersonic Velocity Melting **Near Melting Far Below Melting Thermal Spray** Laser Assisted Cold Spray **Cold Spray** Powder Sub-sonic particle stream Workpiece Feeder Combustion chamb Spray powder supply Powder NOZZLE velting the powder particles Preheat Substrate Z-Dir. Gas Preheat Ē Powder particles 面面 suspended in hot N₂ gas Ignition Laser source Cooling water Strong Adhesion Strong Adhesion Strong Adhesion High Porosity Low Porosity Very Dense • **High Tensile Stress Controlled Heat Compressive Stress** • **Oxidation & Heating** Economic N₂ Process **Expensive He Process**

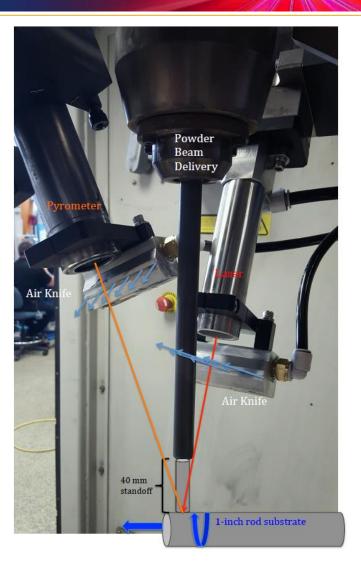
7/27/2018

7


PHOTONICS


LACS Deposition of CP Ti on a Steel Shaft

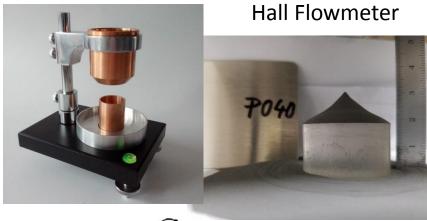
LACS Process Advantages

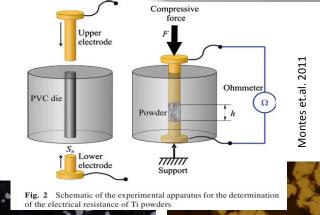


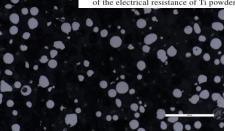
- Capable of spraying a wider variety of materials
- Use N₂ vs He with similar results, reducing operating costs
- The required minimum particle diameter for deposition is adjustable
- Surface Treatments:
 - Substrate preparation (surface ablation/cleaning/roughening)
 - Surface finish (post heating, shot peening, etc)
 - Heat treat on demand

Results – DOE

Feature	Parameter	
Powder	Ti, Fe, Al, Ni, Cu, WC, Ta, Nb, Mo	
Substrate Material	Fe (steel, cast iron, SS), Al, Cu	
Powder Particles Size	5-150 μm	
Powder Feed Rate	variable	
Coating Thickness	50μm - 20 mm	
Laser Power	10 kW (IPG YLS 10000)	
Spot Size	6.0-8.00 mm, variable	
Laser position/angle	Off axis, variable	
Spray spot size	~10.0 mm	
Nozzle Material	WC	
Nozzle diameter	5.0 mm	
Nozzle Standoff Distance	39.0 mm	
Laser Set temp	variable	
Raster Speed	variable	
Speed of the gun	N/A	
Nozzle Standoff Distance	39.0 mm	
Gas	Air, He, N ₂ , mix	
Gas Pressure	30 bar (nozzle design)	
Gas Temperature	450 - 650°C	
Part Geometry	Cylindrical, Flat	

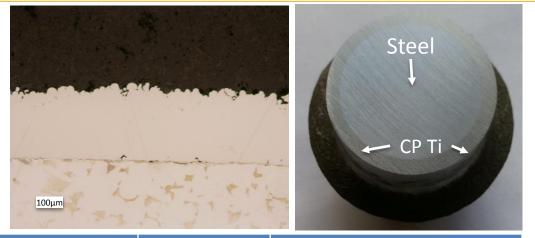





Results – Powder Characterization

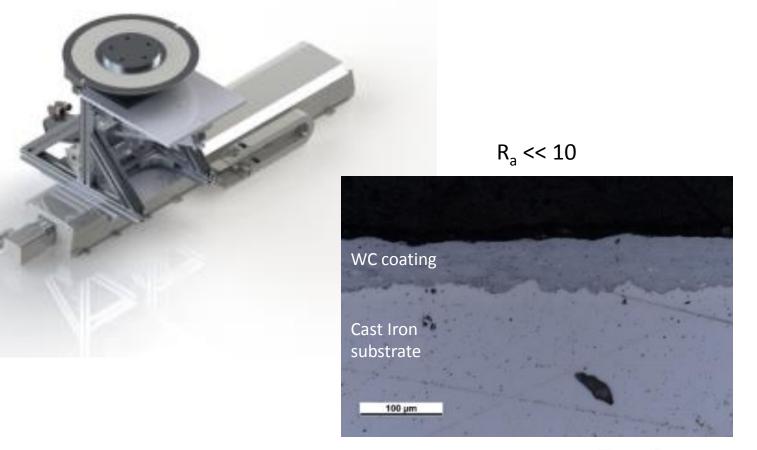
Powder	Substrate	
Ti-based	Steel	
WC-Co/Ni	Cast iron, stee	
Ni-based	Cu-based	
Al-based	Al-based	
HP Cu		
Stainless Steel		
Ta, Nb, Mo, W-Ta	Steel	
 Particle Siz Morpholog Flowability Internal Po Apparent of 	v prosity density	
MorphologFlowabilityInternal Po	gy v prosity density	

- Elemental Analysis
- Nanoindentation

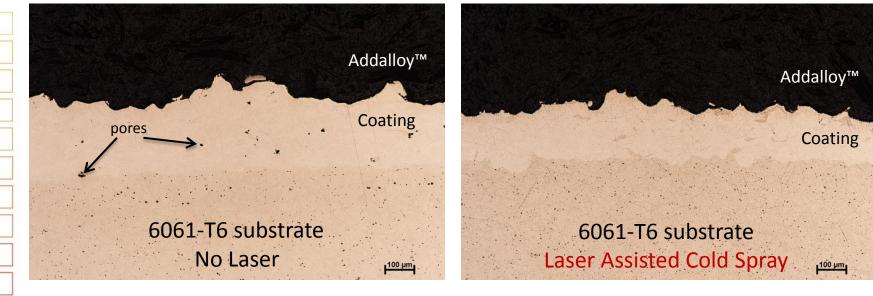


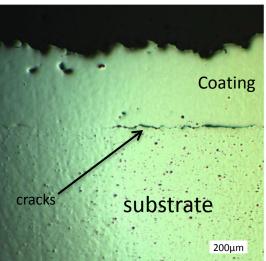
Results – CASE#1 - CP Ti on Steel

CP Ti G2 on Low Carbon Steel

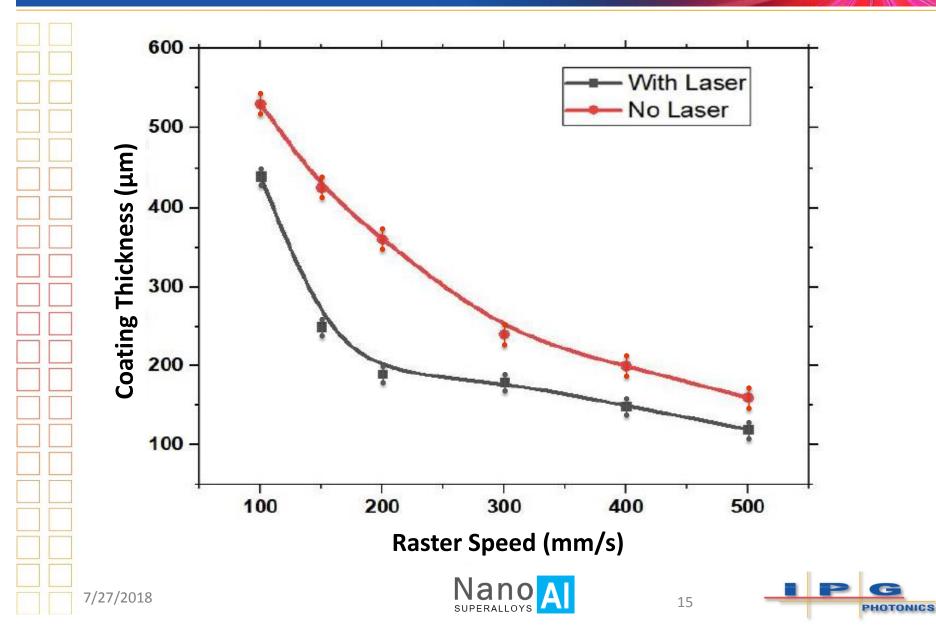

System	Vacuum Arc Spray	IPG-LACS	CGT 4000 (He)	
Demo Material	СР Ті	CP Ti	СР Ті	
Porosity	<1%	<0.8%	0.42%	
Bond Strength	7.3 ksi	10 ksi*	3.8 ksi	
Spray Cost (\$/kg CP Ti)	197	199	322	
Deposition Rate	3-5.4 kg/hr	5 kg/hr	5 kg/hr 14 kg/hr	
Deposition Efficiency	High	88%	8% 85-100%	
Source	Steffens (1985)	IPG	IPG/Hussain (2011)	
*Glue coating failure				

7/27/2018


IPG Photonics Confidential Information

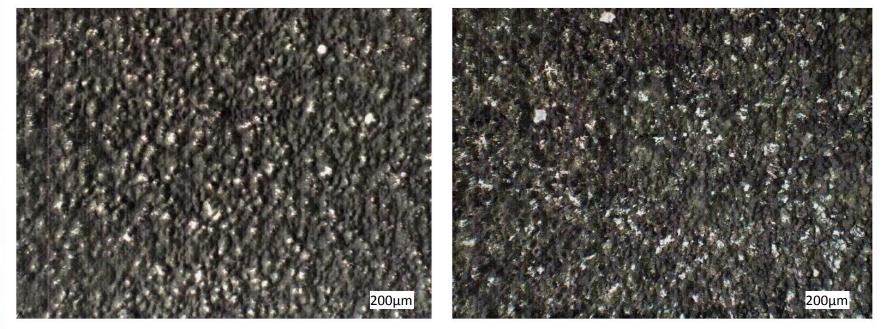

PHOTONICS

 Tungsten Carbide on Cast Iron Brake Rotors Goal: Increase rotor life from 60K to 120K km



7/27/2018

substrate

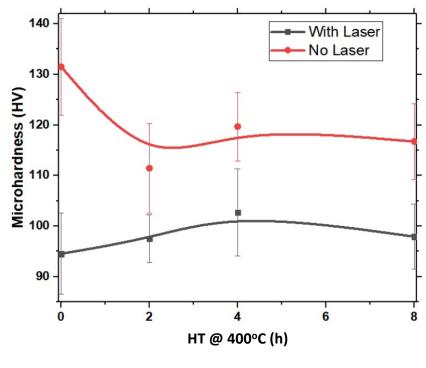

Coating

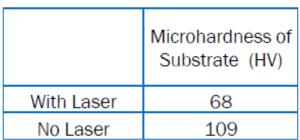
PHOTONICS

Laser Assisted Cold Spray

Cold Spray

	With Laser (µm)	No Laser(µm)
Roughness average (Ra):	13.2	17.9


Combination of optical images


- Cross section view (magnitude of wave)
- Plane view at multiple heights (3D view of roughness)
- Plot image intensities across surface

- No laser
 - Powder strength + strain hardening
 - After HT @ 400°C: strain • hardening \downarrow , precipitation hardening ↑
- With Laser
 - Full annealing of coating (no strain hardening)

17

Laser ON for first layer (increase
bonding)

<u>Strategy</u>

- 2. Laser OFF during coating (max strength)
- 3. Laser ON for last layer (smooth surface)

1.

IPG LACS Next Gen

- Fast deposition rate reduces cycle time
- Nitrogen process gas is much cheaper than Helium
- Lower gas temperatures reduce energy use
- High deposition efficiency reduces material waste
- IPG's unprecedented laser wall-plug efficiency (>40%) reduces operating costs (up to 100kW+)

World Leadership in High Power Fiber Lasers

Thank You

IPG Photonics Corporation

(NASDAQ: IPGP)

