

CHROME REPLACEMENT REPAIR DEVELOPMENT USING HPCS

CSAT 2020

Eric Przybylowicz, Billy Simmons, Juan Nazario

Honeywell

AGENDA

- Introduction
- Cr-replacement program qualification at Honeywell
 - Background
 - Spray activities at Army Research Lab (ARL)
 - Evaluation & testing results
 - Confirmatory spray activities at Honeywell
 - Evaluation & testing results
- Qualification testing summary
 - Remaining steps for production readiness
- Acknowledgments

INTRODUCTION

- Cold spray remains a core technology at Honeywell Aero R&O
 - Phoenix Sky Harbor: Low & High Pressure capability
 - VRC Gen 3 21 kW System, Centerline SST
- Honeywell currently repairs over 160 part features covered by more than 60 approved repair documents
 - Typical Features: Seal Surfaces, Housings, Flanges, etc.
 - Current approvals are limited to non-structural applications
- Cold Spray repairs are performed both in-house and using external suppliers
 - Supplier approval is powder composition, powder manufacturer, and base material specific
 - Authorization for part number application controlled through overhaul repair instructions (ORI)
- Current Cold Spray approvals include:
 - Powder Compositions: Aluminum + 30-40% Al₂O₃, CP Aluminum, Inconel 625
 - Base Materials: Aluminum, Magnesium, Titanium

- Honeywell is a participant in completing the JTP WP19-5120 "Cold Spray Coatings for Cr and Ni Plating Replacement"
 - Objective: Validate the use of Cold Sprayed materials as replacements for Cr and Ni plating for DoD parts (due to hazards associated with plating processes).
 - Multiple substrates, powders, gases, and nozzles were evaluated as part of this JTP; the work presented here will focus on lug-shear validation testing and cold spray application for a single part number.
 - The Low Pressure Compressor Shaft for the AGT 1500 Engine
 - SAE 4140 steel per AMS6529
 - Normalized, quenched, and tempered ~40 HRC
 - Chrome plate per AMS2406
 - 8 Ra surface finish requirement
 - Work scope
 - Coupons and shaft Cold Spray repaired at ARL
 - Lug-shear evaluation (two spray parameter sets)
 & machining of repaired shaft
 - Confirmatory coupons Cold Spray repaired at Honeywell
 - Lug-shear evaluation
 - Summary of Results

Copyright by Honeywell 2020. All rights reserved.

- Lug-shear coupons and shaft Cold Spray repaired at ARL
 - Two different spray parameters used to deposit powder onto coupons designated ARL and HON:
 - Bond coat: WIP-BC1, 41% Ni, 2.6% C, Bal Cr
 - Top coat: WIP-C1, 31% Ni, 3% C, Bal Cr
 - VRC Gen 3 21 kW System
 - Spray gas: Nitrogen
 - Parameter changes made for HON repairs in an effort to offset reduction in temperature and maintain properties

Parameter ID	Nozzle	Pressure (bar)	Temperature (°C)	Carrier Gas Flow Rate (L/min)	Revolutions per minute (RPM)	Stand-Off Distance (in)
HON	VRC NZZL0066	Increased	Reduced	No Change	Increased	0.095
ARL	VRC NZZL0058	44-46	700-720	100-150	5-7	0.960

 Shaft Cold Spray repaired using the HON parameter set

- Lug-shear & Shaft fabrication
 - Cold Spray coupons (ARL & HON) were machined per ARL-002
 - Repaired shaft successfully ground to achieve required surface finish (8 Ra)

- Lug-shear Testing per JTP (Modified Mil-J-24445A, ARL-001)
- Each lug sheared individually (2 lugs per coupon)

- Lug-shear Testing per JTP (Modified Mil-J-24445A, ARL-001)
- All shear results exceed typical deposit property expectations: 20-30 ksi •
 - Increase in HON shear strength may be attributed to increased displacement rate during initial testing (0.05 inch/sec vs in/min)

HON1A0.200012,30661.5Testing Displacement rate: 0.05 in/sec Sprayed @ARLHON1B0.194112,18562.8Testing Displacement rate: 0.05 in/sec Sprayed @ARLHON2A0.199512,00360.2Testing Displacement rate: 0.05 in/sec Sprayed @ARLHON2B0.198811,51958.0Sprayed @ARLARL1A0.199510,67853.5Sprayed @ARL
HON1B0.194112,18562.8Testing Displacement rate: 0.05 in/sec Sprayed @ARLHON2A0.199512,00360.2Testing Displacement rate: 0.05 in/sec Sprayed @ARLHON2B0.198811,51958.0Sprayed @ARLARL1A0.199510,67853.5Sprayed @ARL
HON2A 0.1995 12,003 60.2 Testing Displacement rate: 0.05 in/sec Sprayed @ARL HON2B 0.1988 11,519 58.0 Sprayed @ARL ARL1A 0.1995 10,678 53.5 Sprayed @ARL
HON2B 0.1988 11,519 58.0 Sprayed @ARL ARL1A 0.1995 10,678 53.5 Sprayed @ARL
ARL1A 0.1995 10,678 53.5 Sprayed @ARL
ARL1B 0.1998 10,198 51.1 Sprayed @ARL
ARL2A 0.1998 8,730 43.7 Sprayed @ARL
ARL2B 0.1946 10,885 55.9 Sprayed @ARL
HON Average: 60.6
ARL Average: 51.1

HON Samples Recipe used was Honeywell HW-WIP-C1-001

ARL Samples Recipe used was ARL VM-WIP-B1H-001 Bond Coat and ARL VM-WIP-C1N-001 Top Coat

Testing performed in accordance with ARL Joint Test Protocol WP19-5120

- Lug-shear Evaluation
 - Fracture primarily occurred through the Cold Spray deposit adjacent to or along interface
 - Exhibited satisfactory bonding along interface
 - No excessive voiding or oxide contamination noted
 - Significant material mixing at interface
 - No significant microstructural differences noted between spray parameters

- Confirmatory Lug-shear coupons Cold Spray repaired at Honeywell
 - Only HON spray parameters evaluated
 - Identical fabrication and testing processes employed
- Shear results exceed typical deposit property expectations: 20-30 ksi
 - Average shear strength: 54 ksi

Sample ID	Area (in²)	Peak Load (Ibs.)	Shear Stress (ksi)	Comments
HON3A	0.1979	10,187	51.5	Sprayed @HON
HON4A	0.1974	11,140	56.4	Sprayed @HON
		HON Average:	54	

Notes:

HON Samples Recipe used was Honeywell HW-WIP-C1-001

Testing performed in accordance with ARL Joint Test Protocol WP19-5120

- Lug-shear Evaluation
 - Fracture primarily occurred through Cold Spray deposit adjacent to bond interface
 - Exhibited satisfactory bonding along interface
 - No excessive voiding or oxide contamination noted
 - Significant material mixing at interface

Cold Spray Parameters Evaluated

Parameter ID	Nozzle	Pressure (bar)	Temperature (°C)	Carrier Gas Flow Rate (L/min)	Revolutions per minute (RPM)	Stand-Off Distance (in)	Spray Gas	Spray System
HON	VRC NZZL0066	Increased	Reduced	No Change	Increased	0.095	Nitrogon	VRC Gen
ARL	VRC NZZL0058	44-46	700-720	100-150	5-7	0.965	Nillogen	III

- Variation evaluated due to difference in CS system restrictions
- Shear test results
 - ARL and HON parameter sets resulted in similar shear strength values, both of which surpassed the expectation of 20-30 ksi

Sample ID	Area (in²)	Peak Load (lbs.)	Shear Stress (ksi)	Comments
HON2B	0.1988	11,519	58.0	Sprayed @ARL
HON3A	0.1979	10,187	51.5	Sprayed @HON
HON4A	0.1974	11,140	56.4	Sprayed @HON
ARL1A	0.1995	10,678	53.5	Sprayed @ARL
ARL1B	0.1998	10,198	51.1	Sprayed @ARL
ARL2A	0.1998	8,730	43.7	Sprayed @ARL
ARL2B	0.1946	10,885	55.9	Sprayed @ARL
		HON Average:	55.3	
		ARL Average:	51.1	

HON Samples Recipe used was Honeywell HW-WIP-C1-001

Notes:

ARL Samples Recipe used was ARL VM-WIP-B1H-001 Bond Coat and ARL VM-WIP-C1N-001 Top Coat

Testing performed in accordance with ARL Joint Test Protocol WP19-5120

11

- Remaining steps for production readiness
 - Document substantiation & initial part results Complete
 - ARL / Army submission for approval In-Process
 - Create repair instruction ECD August 2020
 - To authorize application of Cr-replacement Cold Spray on subject part number
 - Revision of Cold Spray supplier control document ECD August 2020
 - To include applicable powder manufacturer, composition, and base material
 - Process initial part at Honeywell R&O ECD September 2020
 - Approve source for processing to repair instruction
 - Begin routine production

12

ACKNOWLEDGMENTS

- Bruce Almond & Billy Simmons at Honeywell
- Vic Champagne, Isaac Nault, Aaron Nardi, & Matt Siopis at ARL

QUESTIONS?

13