

MAI BA-22/BA-24: Cold Spray Repair of Aerospace Structural Components CSAT 2020 – Update Dr. James Castle

Approved for Public Release - Distribution Unlimited - 88ABW-2020-2102

AFRL Monitor: AIPT Lead:	Manny Gonzales Bruno Zamorano, James Castle, Michael Nicholas, Waynie Schuette	(AFRL) (Boeing)
AIPT Members:	Ted Hatch, Dale Ball, Jim Sullivan, Jacob Carlson Abby Miklas	(Lockheed Martin) (Honeywell)
	Peter Loftus, Matt Gold Sesh Tamarisakandala, Michael Jacques Isaac Nault, Aaron Nardi	(Rolls-Royce) (Howmet) (ARL)

It's all non-structural till its not

- Non-structural cold spray repairs can be done today
 - No load credit taken
 - Can be applied on structural parts
 - Still requires significant data, processes, specifications, certifications, equipment
 - Paced by the certifications necessary for each specific repair or repair class
- Non-structural repairs are usually on structural parts
 - Always a few thousandths from a non-structural repair becoming structural
 - Conversion of non-structural repairs to structural is needed

Repair opportunities seen in fleet

- Most common repair types for cold spray observed in implementation efforts
 - Corrosion
 - Upper wing skins, under skins and doors, everywhere
 - Damaged Holes
 - Access panels, doors, substructure
 - Wear Surfaces
 - Slat tracks, doors
- Every platform had needs
 - Finding applications not the problem
- Each has a non-structural repair opportunity and a limit beyond which it becomes structural They all ask if they can have structural

Cold Spray Repair Classifications

- Not truly bucketized in practice
 - Continuum of load margins, criticality, purpose
 - Analyzing the continuum is a significant cost factor

Classification	Description	
A	Coating restoration:Replace cladding with cold spray	Sho
В	 Non-structural dimensional restoration: Cold Spray does not have to carry load Could be structural part 	rt-Term
С	 Non-critical structural: Cold Spray carries load Platform will still operate/fly if cold spray part fails 	Intermedi: Term
D	 Semi-critical structural: Cold Spray carries load Failure results in damage to aircraft and mission 	ate- Lor
E	 Structural Critical: Cold Spray carries load Failure results in loss of platform 	-9r

Certification Requirements

EZ-SB-13-001 Rev A, "*Material, Product Form, and Process Substitution Requirements for Metallic Components,*" published by AFLCMC on 1 Nov 2019

Dequired to Achieve 5 "Lincoln Dillere"	Material Property Characterization	BA-24
Required to Achieve 5 Lincoln Pillars	Physical	
 Stability and Producibility Process, Vendor Qualification 	Microstructure evaluation (Linear indications, porosity, oxides) <i>Mechanical</i>	X
 Producibility / Predictability Procedure Qualification 	Shear adhesion strength (Three-lug shear testing)	X X
3. Predictability	Corrosion	
 Adhesion, Porosity, Defects, Surface Finish, Macro Process Check 	Salt spray corrosion testing	X
4. Property Characterization	Exfoliation corrosion susceptibility	X
5. Supportability	Intergranular corrosion resistance Supportability	Х
 Service life testing 	Tension testing (UTS, YS, elongation, modulus)	х
BA-24 is focused on Pillars 4-5 with BA-	Fatigue crack initiation	Х
22 some initial work in 1-3	Fatigue crack growth rate	Х
	Fracture toughness	Х

Cold Spray Doubler Carries Load

Fatigue Impact of Repair/Replace

• Relative numbers at one load level and other simplifications

Can future cold spray close the gap?

Equivalent cold spray performance minimizes analysis required

What's missing in current work?

- Non-Destructive Testing / Evaluation
- A/B Basis Allowables / MMPDS
- Maturity of first 3 Lincoln pillars
 - Stability, Producibility, Predictability
 - Flaw distributions
 - BA-26 (Coming Soon)
- Low Helium / Nitrogen carrier gases
- Legacy material substrates
 - Can't make a different spray powder to match substrate for every possible aluminum in practice