UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

Cold Spray Powder Specification Implementation CSAT 2018 19-20 June 2018 Worcester Polytechnic Institute, Worcester, Massachusetts

Gehn D. Ferguson & Brian E. Placzankis U.S. Army Research Laboratory

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

This specification Defense.

1.1 Scope. This

aluminum and alu cold spray materia

of freestanding str

to form a deposit coatings or free-sta process standard M

U.S. Army R Specifications & 21005-5069 or

can change, you ASSIST Online

AMSC N/A

1. SCOPE

ARL Cold Spray Powder Specification Team

Advanced Materials & Processes Victor K. Champagne Gehn D. Ferguson Dennis J. Helfritch Aaron T. Nardi

U.S. ARMY RDECOM®

Specifications & Standards Office Richard J. Squillacioti (Retiring) William S. Lum Brian E. Placzankis

Industry & Academia Tim J. Eden, PSU Christian A. Widener, VRC Systems

	<u>Spe</u>
INCH-POUND	• Ac
MIL-DTL-32495	• Cr
w/Amendment 2 23 August 2015 SUPERSEDING	• An
MIL-DTL-32495 w/INT. AMENDMENT 1 26 September 2014	• An
MIL-DTL-32495 12 May 2014	• Re
DETAIL SPECIFICATION	
ALUMINUM-BASED POWDERS FOR COLD SPRAY DEPOSITION	
fication is approved for use by all Departments and Agencies of the Department of	<u>Acq</u>
	• Sp
2. This specification covers requirements intended for use in the procurement of and aluminum-based alloy powders that will be used to produce deposits utilizing a materials deposition process for the purpose of parts repair, coatings, or fabrication	• Sy
nding structures. Cold spray is a process whereby metal powder particles are utilized a deposit by means of ballistic impingement upon a substrate in order to produce or free-standing structures. This cold spray process is explained in the manufacturing	• Co
andard MIL-STD-3021, "Materials Deposition, Cold Spray".	• Fu
nts, suggestions, or questions on this document should be addressed to: Director, rmy Research Laboratory, Weapons and Materials Research Directorate, ations & Standards Office, Attn: RDRL-WMM-D, Aberdeen Proving Ground, MD 069 or emailed to richard.jsquillacioti.civ@mail.mil. Since contact information nge, you may want to verify the currency of this address information using the Online database at https://assist.dla.mil/ .	
A AREA MFFP	
UTION STATEMENT A: Approved for public release; distribution is unlimited.	
Source: https://assist.dia.mil Downloaded: 2018-06-04T14:36Z Check the source to verify that this is the current version before use.	

Specification History

- Accompanies MIL-STD-3021
- Created 12 May 2014
- Amendment 1, 26 SEP 2014
- Amendment 2, 23 AUG 2015
- Revision A, forthcoming

Acquisition Path

- Specification (QPL & NSNs)
- System Engineering Drawing
- Contracts for acquisition
- Full Transition

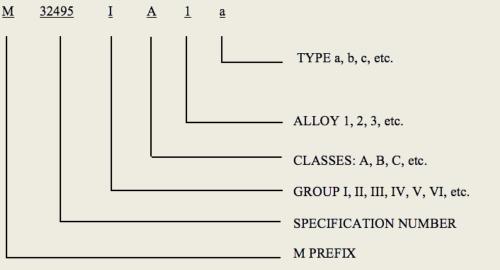
UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

Specification Term Guide

• PIN – Part Identifying Number

RDECOM®

- NSN National Stock Number
- QPL/QPD Qualified Products List / Qualified Products Database
- CEA Cognizant Engineering Authority
- PA Preparing Activity
- Qualification The process by which a powder is added to the QPL/QPD
- Conformance The process by which the quality of the powder is ensured for future contracts


MIL-DTL-32495 Revision Goals

MIL-DTL-32495A Goals

U.S. ARMY RDECOM®

- Expand specification to include many other powders beyond aluminum and its alloys
- Designate Part or Identifying Number (PIN) PINs to be used for powders acquired by this specification

- Define powder quality for acceptance including contaminants, shelf life, and storage practices
- Include sample images to define quality of spray with examples to reject
- Establish Qualified Products List (QPL) document Prior requirement was First Article.
- QPL & QPD will include products with assigned National Stock Numbers (NSNs)

MIL-DTL-32495 - Cognizant Engineering Authority

The ARL Advanced Materials & Processes Team (Cold Spray Team) and the other knowledgable government representatives may serves as *Cognizant Engineering Authorities* (CEAs) to determine if new powders will meet their application's minimum acceptance criteria necessary for inclusion within the companion QPL document.

When the CEA has determined that a powder satisfactorily fulfills the compulsory criteria of MIL-DTL-32495 the powder and its qualification data are submitted to the Preparing Activity (PA), the ARL Specifications and Standards Office, for final review, assignment of a new NSN and inclusion into the QPL/QPD document.

Mr. William Lum of the ARL Specifications and Standards Office manages QPL/QPD and NSN assignment activities.

MIL-DTL-32495A Additions

1																	18	
1 H 1.008	2		0		,							13	14	15	16	17	2 He 4.0026	Class A: Un-alloyed iron
3 Li 6.94	4 Be 9.0122			oup I o oys po			on an	d stee	el-bas	sed		5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18,998	10 Ne 20,180	powder. Class B: Plain carbon steels
11 Na 22,990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39,948	powder. (1008) Class C: Low Alloy steels
19 K 39.098	20 Ca 40.078	21 Sc 44,956	22 Ti 47,867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79,904	36 Kr 83,798	powder. (4340) Class D: High alloy and
37 Rb 85.468	38 Sr 87.62	39 Y 88,906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29	stainless steels powder. (304, 316, 13-8 Mo, 15-5 PH, 17-4. PH, AM-355, Incoloy A-286)
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)	Class E: Tool steels powder.
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)	Class F: nonsteel iron alloy powder.
	* Lanth seri		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
	# Actin serie:		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

MIL-DTL-32495A Additions

1	_																18	_
1 H 1.008	2											13	14	15	16	17	2 He 4.0026	<u>Classes</u>
3 Li 6.94	4 Be 9.0122			-			llumir lloys l					5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	Class A: Pure Aluminum Powder. (commercially pure, high purity)
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948	Class B: 1000 series Al powder.
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798	Class C: 2000 series Al powder. (2024)
37 Rb 85,468	38 Sr 87.62	39 Y 88,906	40 Zr 91,224	41 Nb 92,906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106,42	47 Ag 107.87	48 Cd 112,41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29	Class D: 3000 series Al powder. (3003)
55 Cs 132.91	56 Ba 137,33	57-71 *	72 Hf 178,49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200,59	81 Tl 204.38	82 Pb 207.2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)	Class E: 4000 series Al powder. (4047)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)	Class F: 5000 series Al powder. (5056, 5083)
(44.7)			(200)	(200)	(271)	(270)	(277)	(270)	(201)	(200)	(200)	(200)	(207)	(207)	(275)	(274)	(254)	Class G: 6000 series Al powder. (6061)
	* Lanti seri		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	Class H: 7000 series Al powder. (7050, 7075)
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	Class J: 8000 series Al powder.

The Nation's Premier Laboratory for Land Forces

MIL-DTL-32495A Additions

1																	18	
1 H 1.008	2		0.40			oine			1			13	14	15	16	17	2 He 4.0026	<u>(</u>
3 Li 6.94	4 Be 9.0122			•			•••	er and vders				5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	p
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948	((
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798	(
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29	
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)	
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)	
	* Lanti seri	hanide ies	anide es 57 58 59 60 61 62 63 64 65 La Ce Pr Nd Pm Sm Eu Gd Tb 138.91 140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.9											68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

Classes

Class A: un-alloyed copper powder.

Class B: bronze alloy powder. (DT-31)

Class C: brass alloy powder. (cartridge brass)

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

MIL-DTL-32495A Additions

1																	18
1 H 1.008	2		0		1					I		13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			•			U U	iesiur s pow				5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri	anide 57 58 59 60 61 62 63 64 69											67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)			

<u>Classes</u>

1.01

Class A: un-alloyed magnesium powder.

Class B: magnesium alloy powder.

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

MIL-DTL-32495A Additions

1																	18
1 H 1.008	2		0									13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			•		ains z oys p						5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47,867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lantl seri	tanide es 57 58 59 60 61 62 63 64 65 La Ce Pr Nd Pm Sm Eu Gd Tb 138.91 140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.9									65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actin serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Classes

Class A: un-alloyed zinc powder.

Class B: zinc alloy powder.

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

U.S. ARMY RDECOM®

U.S.ARMY

MIL-DTL-32495A Additions

1	_																18
1 H 1.008	2		0				.,					13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			oup V er-ba								5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47,867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lantl seri	hanide es	de 57 58 59 60 61 62 63 64 65 La Ce Pr Nd Pm Sm Eu Gd Tb 138.91 140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.93										67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Classes

Class A: un-alloyed silver powder.

Class B: silver alloy powder.

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

U.S.ARMY

MIL-DTL-32495A Additions

1	_																18
1 H 1.008	2		0									13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			oup V d-bas			U					5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri	thanide ies $\begin{array}{c ccccccccccccccccccccccccccccccccccc$									65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Classes

Class A: un-alloyed gold powder.

Class B: gold alloy powder.

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

MIL-DTL-32495A Additions

1																	18
1 H 1.008	2		0									13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			oup V based								5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri	hanide ies	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

<u>Classes</u>

Class A: un-alloyed tin powder.

Class B: tin alloy powder.

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

U.S. ARMY RDECOM®

U.S.ARMY

MIL-DTL-32495A Additions

1																	18
1 H 1.008	2		0									13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			•		alloys						5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri	hanide ies	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Classes

Class A: un-alloyed cobalt powder.

Class B: cobalt alloy powder.

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

MIL-DTL-32495A Additions

Classes

powder.

powder.

Class A: un-alloyed zirconium

Class B: zirconium alloy

1																	18
1 H 1.008	2		0	······ V					I			13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			•				ium, a powde				5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri	hanide es	ide 57 58 59 60 61 62 63 64 65 La Ce Pr Nd Pm Sm Eu Gd Tl 138.91 140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.										67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

The Nation's Premier Laboratory for Land Forces

MIL-DTL-32495A Additions

1																	18	
1 H 1.008	2		0					اممط				13	14	15	16	17	2 He 4.0026	Classes Class A: un-alloyed nickel
3 Li 6.94	4 Be 9.0122						nicke powe					5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	powder. Class B: iron, nickel, Co alloy
11 Na 22,990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948	powder. Class C: nickel Cr/Fe/Mo alloy
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798	powder. (Inconel 625, Inconel 718)
37 Rb 85,468	38 Sr 87.62	39 Y 88,906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29	Class D: nickel / Cu alloy powder.
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)	Class E: nickel / Mo alloy powder.
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)	Class F: other nickel alloy powder.
()					12.03	12117	1	(2.17)		, ,				(,				
	* Lantl seri		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
	# Actin serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

The Nation's Premier Laboratory for Land Forces

MIL-DTL-32495A Additions

1	_																18	
1 H 1.008	2		0			4		- 1		1		13	14	15	16	17	2 He 4.0026	Class A: un-alloyed niobium
3 Li 6.94	4 Be 9.0122			vders		itains	refra	ctory	meta	IS		5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	powder. Class B: niobium alloy powder.
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948	Class C: un-alloyed molybdenum powder.
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798	Class D: molybdenum alloy powder.
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29	Class E: un-alloyed tantalum powder. (R05200)
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)	Class F: tantalum alloy powder. (R05255)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)	Class G: un-alloyed tungsten powder.
	* Lantl	nanide	57	58	59	60	61	62	63	64	65	66	(7	49	69	70	71	Class H: tungsten alloy powder. (WC-Co)
	seri	es	La 138.91	Ce 140.12	Pr 140.91	Nd 144.24	Pm (145)	50.2 50.36	Eu 151.96	Gd 157.25	Tb 158.93	Dy 162.50	67 Ho 164.93	68 Er 167.26	Tm 168.93	Yb 173.05	Lu 174.97	Class J: un-alloyed rhenium
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	powder. Class K: rhenium alloy powder.

The Nation's Premier Laboratory for Land Forces

MIL-DTL-32495A Additions

1																	18	
1 H 1.008	2											13	14	15	16	17	2 He 4.0026	Classes
3 Li 6,94	4 Be 9.0122			oup X vders		ntains	s Plati	inum	Grou	p met	als	5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20,180	Class A: un-alloyed platinum powder. Class B: platinum alloy powder.
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948	Class C: un-alloyed palladium powder.
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798	Class D: palladium alloy powder. Class E: un-alloyed iridium
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29	powder. Class F: iridium alloy powder.
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)	Class G: un-alloyed rhodium powder.
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)	Class H: rhodium alloy powder. Class J: un-alloyed osmium
	* Lanti seri	nanide es	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	powder. Class K: osmium alloy powder.
			138.91	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	Class L: un-alloyed ruthenium powder.
	# Actin serie:		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	Class M: ruthenium alloy powder.

The Nation's Premier Laboratory for Land Forces

U.S. ARMY RDECOM®

U.S.ARMY

MIL-DTL-32495A Additions

1																	18	
1 H 1.008	2		Cre		1)/ 00	ntoin	, titor		and			13	14	15	16	17	2 He 4.0026	Class
3 Li 6.94	4 Be 9.0122			•				nium a vders				5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	powo Class
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948	titani Clas
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798	alloy Ti-6A Ti-6A
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29	Clas: titani
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)	
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)	
	* Lant seri	hanide ies	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

Classes

Class A: un-alloyed titanium powder. (ASTM Grade 1-4)

Class B: Alpha/Near Alpha titanium alloy powder.

Class C: Alpha/Beta titanium alloy powders. (ASTM Grade 5 Ti-6Al-4V & ASTM Grade 23 Ti-6Al-4V)

Class D: Beta/Near Beta titanium alloy powder.

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

MIL-DTL-32495A Additions

1																	18	
1 H 1.008	2		0			4-1						13	14	15	16	17	2 He 4.0026	Class A: un-alloyed chromium
3 Li 6.94	4 Be 9.0122			oup X omiur					•			5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	powder. Class B: chromium alloy
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948	powder.
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51,996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79,904	36 Kr 83.798	
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29	
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)	
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)	
	* Lanti seri	hanide ies	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

The Nation's Premier Laboratory for Land Forces

MIL-DTL-32495A Additions

1																	18
1 H 1.008	2		0		. /1							13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			up x um-b				um, a /ders	nd			5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri	hanide ies	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

<u>Classes</u>

Class A: un-alloyed lithium powder.

Class B: lithium alloy powder.

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

MIL-DTL-32495A Additions

1	1																18
H 1.008	2		0				- D				_	13	14	15	16	17	He 4.0026
3 Li 6.94	4 Be 9.0122		Gro	oup X		ontain	s Rai	e Ea	rtn pc	waer	S	5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20,180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lantl seri		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

<u>Classes</u>

Class A: 48% mischmetal powder.

MIL-DTL-32495A Additions

1																	18
1 H 1.008	2		0									13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			mpos				etal M	atrix			5 B 10.81	6 C 12.011	7 N 14.007	8 0 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47,867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri	hanide ies	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

<u>Classes</u>

Class A: Carbide Based Blends alloy powder. (CrC-Ni blend, CrC-NiCr blend)

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

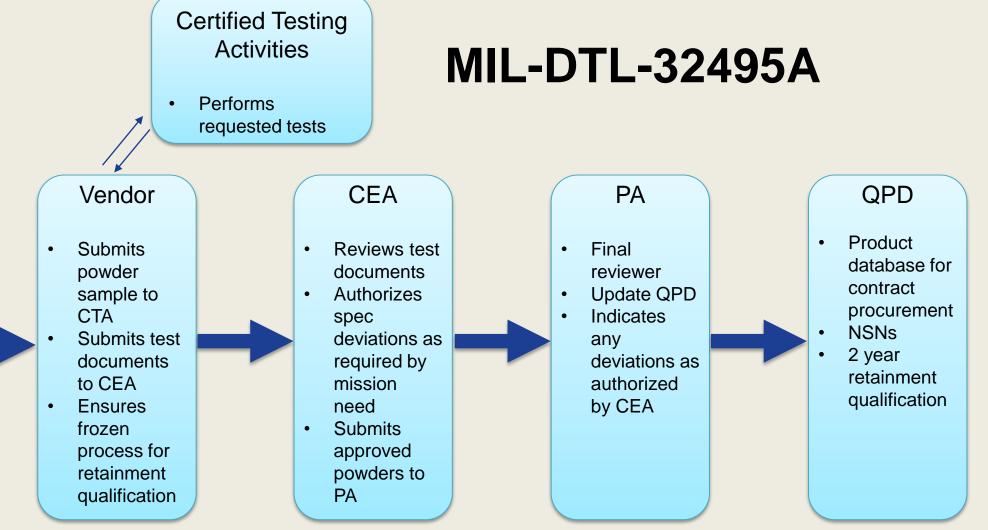
MIL-DTL-32495A Additions

1																	18
1 H 1.008	2		0	N N		1						13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122			oup X ropy a		-			gn			5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106,42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195,08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lantl seri	hanide ies	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Class A: Amorphous alloy powder.

Classes

Class B: High entropy alloy powder.


UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

MIL-DTL-32495A Flow Chart

Performs • requested tests Mission Vendor Need Submits • ٠ powder Drives • sample to • requirements CTA spec set by CEA Submits test ٠ ID vendor documents that supports to CEA need Ensures need • Spec allows frozen • for process for procurement retainment of required

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

powder

U.S. ARMY RDECOM®

MIL-DTL-32495A Test Requirements

- Qualification vs Conformance Tests
 4.2: All test results are forwarded to CEA for maintaining and submission to PA
- Determination of Suitable CS Powders
 Evaluation of quality and sprayability

U.S. ARMY RDECOM®

- Evaluation of "Grade 2" powders
 - Ensuring properties for structural applications
- Retention qualification

•

- DD Form 1718 (Cert. of Qualified Products)
- Images of Powders (In progress)

					REFERENCE	TES	STING
	RE			TEST METHOD	PARAGRAPH	QUALIFICATION	COMFORMANCE
	Chemica	l composition (3.2.1)		ASTM E3061	4.6.1	x	x
	Prohibit	ted materials (3.2.2)		40 CFR 261, 40 CF 40 CFR		x	x
	Non-meta	allic impurities (3.2.3))	ASTM E1131	4.6.2.1	×	
	Охуд	en content (3.2.3)		ASTM E1019	4.6.2.2	x	
	Particle size dis	tribution (3.2.4)	Light scattering	ASTM B822	4.6.3	x	x
	C	Quality (3.2.5)		Visual inspection or as specified in contract or purchase order	4.6.4	x	-
	Flov	vability (3.2.5.1)		ASTM B964	4.6.5	×	
				Visual Inspection		x	9 0
5	Sprayability	Metallographic o (3.2.5.2.1		Porosity ASTM E3 / ASTM E2109	4.6.6.1	x	-
	(3.2.5.2)	Adhesion streng specimen (3.2.		Adhesion strength ASTM C633	4.6.6.2.1	x	÷
	Tension test spec	cimens (3.2.6.1) Grad	e 2 only.	MIL-STD-30 ASTM E8		x	x
	Mechanical pro Grade		Tensile properties (3.2.6.1.1)	ASTM E8/E8M	4.6.7 & Table IV	x	x
	Manufact	uring Process (3.2.7)		-	3.2.1 thru 3.2.1.6.1.1	x	-

MIL-DTL-32495A Packaging and Shelf Life

- Oxygen and moisture can affect ability to spray and deposit powders
- Avoiding exposure to atmosphere is best practice for cold spray powders
- Shelf-life of powder vary from powder to powder
- Packing in appropriately sized containers reduces unnecessary environmental exposure
- Contracting officer sets packaging requirements or selects a recommendation
 - Individually inert packed, sealed metal container for protection, desiccant packets to prevent moisture
 - Individual plastic bags, sealed metal container, desiccant packets
 - Individual plastic bags, sealed plastic container

The Nation's Premier Laboratory for Land Forces

ARL

MIL-DTL-32495A Submission Package

- Initial samples are forwarded to testing activities
- Test results forwarded to CEA

U.S. ARMY RDECOM®

- See 6.6 Submission Package for guidance
- CEA may use own certified facility
- ISO 9000/IEC 17025, NADCAP, NVLAP certified reports
- CEA approved submissions forwarded to PA
- PA serves as final reviewer and QPD manager
- QPD manager also maintains document records

COMPANY & POC	SERVICE	MATERIAL	GROUP	CLASS	ALLOY	ТҮРЕ				
	REQUI	REMENT			C	OMPLETED				
		nposition (3.2.1) naterials (3.2.2)				N/A				
		impurities (3.2.3) ontent (3.2.3)								
		istribution (3.2.4) <mark>of Powders</mark>)							
	Light	scattering								
		ty (3.2.5) ity (3.2.5.1)								
		lity (3.2.5.2) coupon (3.2.5.2.1	1)							
	<u> </u>	est specimen (3.2.	· ·							
		ns (3.2.6.1) Grade								
Mecl	i	es (3.2.6) Grade	2 only							
		$\frac{1}{2}$ erties (3.2.6.1.1)			_					
Manufacturing Process (3.2.7) Shelf life (3.2.8)										
Additional requirements		ne (3.2.0)			_					
Additional requirements	5.									

Questions

- Forward questions and comments to:
 - Brian E. Placzankis ARL Specifications & Standards Office, PA

Brian.e.Placzankis.civ@mail.mil

410-306-0841

• William S. Lum - ARL Specifications & Standards Office, QPD Manager

William.s.lum.civ@mail.mil

410-306-0706

• Gehn D. Ferguson - ARL Cold Spray Action Team

<u>Gehn.d.ferguson.civ@mail.mil</u>

(410) 306-0751

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited

Thanks!

UNCLASSIFIED: Approved for Public Release; Distribution is Unlimited