Build strategies for additive manufacturing by cold spray

Phuong Vo and Manuel Martin

CSAT 2017 Boston, MA June 14, 2017

National Research Council Canada

Cold Spray

- 23 dedicated PhDs, engineers and technicians
- 3 dedicated cold spray booths
- 7 state-of-the-art (high and low pressure) cold spray systems
- Helium recovery system
- Laser assisted cold spray
- Process diagnostics, monitoring and simulation
- Comprehensive testing and characterization capabilities

Cold spray additive manufacturing industrial R&D group objectives

- 1. Develop 3D build-up capabilities for cold spray
- 2. Extend the range of materials applicable for cold spray
- 3. Adapt the cold spray process to attain required deposited material properties for targeted applications

Part reinforcement and consolidation Advanced mold and die fabrication Rapid Prototyping of Metal Parts Dimensional restoration and structural repair

CSAM research axis and breakthrough development

Materials

Applicationdriven integrated solution

- Commercial H13 powder
- As received, different spray conditions tested

- Same commercial H13 powder
- Tailored powder

CSAM research axis and breakthrough development

Materials

Applicationdriven integrated solution Hardware and advanced manufacturing capabilities

Hollow structure manufacturing

for conformal cooling

NRC CNRC

CSAM research axis and breakthrough development

Toolpath and build strategy with cold spray AM

Selective deposition for shape control (literature)

Patent# US 2014/0277669 A1 Sikorsky Aircraft Corp. (A. Nardi et al.) Additive topology optimized manufacturing for multifunctional components

waadamaadaa adaaaadaa ahaa ahaa tarii t

Triangular tessellation technique

J. Pattison et al., Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication, Int. J. Machine Tools & Manufacture 47, 2007, 627-634

Nozzle design for shape control (NRC-London)

Xue et al., Direct manufacturing of net-shape functional components/test-pieces for aerospace, automotive, and other applications, J. Laser Applications 23(4), 2011, 8p. (Patents US 9,168,546 B2 and CA 2,688,108 A1)

NCCNCC

Considerations with cold spray AM

Build strategy

- Design
 parameters
- Transitions
- Support structures

Material-,

Fabrication

hardware-, & processspecific

Toolpath

- Line-of-sight
- Precision and accuracy
- Integrated control

Cold Spray Build

Toolpath generation

- Software-based robot programming
 - Complex toolpaths
 - Accurate, flexible, and efficient
 - Multiple toolpaths
 - Point density
- Simulation
 - Verification and troubleshooting

NRC·CNRC

Cold spray powder and equipment

Inovati KM-CDS 2.2

NC.CNCC

Build strategy for shape control

- Resolution
 - ~4 mm outlet diameter for commercial nozzle
- Typical profile
 - Build-up at centre of particle jet greater than edges
- Altered profile
 - Consecutive passes at different spray angles

2 mm

Typical Profile

Spray at 90° to substrate

Altered Profile Spray at 90°

NRC CNRC

Build strategy for shape control

Multiple passes with typical deposition profile

Multiple passes with altered deposition profile

Layer-by-layer build considerations

- Design parameters
- Layering strategies
- Toolpath planning

Layer-by-layer build considerations

- Design parameters
- Layering strategies
- Toolpath planning

Design and build process

- Freeform stiffening structures
 - Design flexibility
- Toolpath planning
 - Build strategy
 - Robot considerations
 - Simulations
- Build process
 - Cold spray build
 - In-process machining

Toolpath planning

• Heat and mass transfer simulation

Manufacturing process

NRC Solutions software

Cold spray AM industrial R&D group – NRC team

Thermal Spray Team

•M. Aghasibeig, J.-F. Alarie, C. Cojocaru, D. de Lagrave, F.-D. Guenette, B. Guerreiro, B. Harvey, C. Hoang, E. Irissou, J.-M. Lamarre, M. Lamontagne, J.-G. Legoux, R. Lima, M. Martin, D. Poirier, J. Sykes, K. Theberge, J.-C. Tremblay, P. Vo, M. Zeman, Polly-Lee Moore

Powder Forming Team

•F. Bernier, R. Bouchard, P. England, M. Laplume, L.-P. Lefebvre, S. Mercier, R. Pelletier, D. Simard, Y. Thomas, S. Veillette

Modeling & Simulation Team

•S. Bournival, F. Ilinca, R. Yu, B. Blais

Ultrasonic Technology | Process Diagnostics Team

•A. Beauchesne, C. Bescond, S.E. Kruger, G. Lamouche, D. Lévesque, M. Lord, J.-P. Monchalin, D. Rocheleau, Z. Sun, J. Wu

Automation, Robotics and Intelligent Manufacturing Systems Team

•G. Côté, B. Monsarrat, M. de Montigny

NRC·CNRC

Thank you

Phuong Vo, PhD Research Officer Tel: 450-641-5123 Phuong.Vo@cnrc-nrc.gc.ca www.nrc-cnrc.gc.ca

