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Past work at NU related to modeling and simulations of Cold Spray particle impact phenomenon

o FE modeling approaches for CS (1, 5)

0 Models of particle adhesion (1,G%6)

0 Assessment of interface energy (3, 4)

0 Multi-particle impact and cohesion (5, 6)

o Effects of particle and substrate temperatures and effects of impact freque(@®y

0 Molecular dynamics simulation of impa@h preparation)
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Goalsg initially morphology-based
Investigate the #ectsof

o Thermal state of the particles and the
substrate,and

o Spatial and temporal spacing of the particles i =
multi-particle impactsin cold spray

Modeling Considerations
0 Material model
0 Gasparticle flow

onSiO2 15.0kV 9.3mm x500 SE(M) 8/26/2012 100um

_ _ SEM image (Allavian
0 Time between Impacts and thermal A Al particles on Al substrate
response of the impacted A 573 K gas inlet temperature

particle/substrate

Synergistic Activities
0 Experimental analysis of interfaces
0 MD simulations

[1] P. Fauchaisind G Montavon, "Thermal and cold spray: Recent developmeni®y Engineering Materialgol. 384, pp. 359, 2008
[2] H.Assadkt al.,"Bonding mechanism in cold gas sprayimgtaMaterialia, vol. 51, pp. 4372394, 2003

Muftu, Gouldstone Upmanyu Ando Northeastern University



Confidential. Do not distribute.

Gas-Particle Interaction (for multi-particle impact)

Shock standoff

0 Provided with gas T (no inflight diagnostics)
0 We developed our own 1D Code
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0 1D particlegas flow model [7]
0 Isentropic
o Compressible gas flow
0 Interactions between particles are neglected — Gas Velocity — Particle Velocity
- . . ===Gas Temperature = ===Particle Temperature
o Determine particle velocity and temperature ¥ : S
at Impact — NOZZ]CEXlt\
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[7] R. CDykhuizerand M. F. Smith, "Gas dynamic principles of cold spdayfnal of Thermal Spray Technology, 7, pp. 208212, 1998
[8] Results obtained viBarticleFlowSim
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Average time between impacts

t..e= (No. of impactingarticles)/(No.of Particles/unit timg

3
omiy 8A 5P 60h) A LA
ave fp —A\j - fp 4,0(;dp)2 6fp

m, : mass density of particles (massl)
d, : diameter of particles (length)
A, : Nozzle exit area (area)

f, : Particle feed rate (mass/time)

twe ~ 100msestimated average time between impacts at the same position (no raster)

m, : 8900 kg/m3
d, 125 um
d, : 6.5 mm

fo 1 0.01 kgls
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Material Model

o Johnson Cook plasticity model 0 Stress Based Cohesion Mo

0 Tem.perature Fraction of material yield stres
0 Strain o Oxide, impurities
o Strain rate
0 Material constantsA, B, C, n, nand T,

o Plastic work converted to heat

0 b=0.9 $0% of strain energy is converted to heat)

0y(€p€p, T) = [A+ Blep)™| [1 + Cln(")[[1 = (T7)™]

_ & -1y
gp = L and T = —( )
Spo (Tm - TD)
:
- - 0.9 e i« . :
o0 Shear material failure 08 | u e o
. . Effg‘??:%] 207 o 3D with erosion
0 Relationship between JohnsdPook e E0B
model and shear instability strain aes 80% oBm
; . . 3'357: oo & 047 gt
0 Produces maximum plastic strain at HiEEonie 8 03
which material fails e e e
- S

0 Equivalent plastic straif}, = 2
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Typical Run
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Heating of the Substrate, T,

o0 Effect of substrate temperature 0 Less initial particle deformation
0 Accounting for substrate temperature 0 More deformation in substrate
results in highefl o Softer material absorbs more energy

V) = 677 m/s, TP =602 K

PEED
(Awg: F5%)

+2.000e+00
[ +1.222e+00

+1.6672+00
+1.500e+00
+1.223e+00
+1.167=+00
+1.000e+00
+8.332e-01
+6.6672-01
+3.000e-01
+3.332e-01
+1.6672-01
+0.000e+00

Material: Aluminum D, = 31 pm
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Impact frequency (mass flowrate)

o Simulated by cooling the initial particle

0 Less deformation in the initial particle
0 More pronounced for smaller

VO = 677 m/sT® = 602K, T, = 600 K

1 =10 ym

PEEQ
(Awig: 73%)
+2.000e+00
[ +1.2222+00
+1.6672+00
+1.500e+00
+1.2232e+00
+1.167=+00
+1.000e+00
+3.333e-01
+6.6672-01
+5.000e-01
+3.332e-01
+1.6672-01
+0.000e+00

20 pm

1

1 =30 um

1 =40 pm

With hot initial particle With cooled initial particle
Material: Aluminum D,= 31 pm T,= 600 K
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Shape metrics to provide quantitative measure of deformation

A Axis Ratio A Perimeter
A Max/Min of ellipse axes A Elongation
A Eccentricity A EL= log(a/b)
A Circularity of object A a, b are ellipse major and minor axes
Al ANDE ST v 6 KA S Af DisgeSion K
A Equivalent Diameter A DP = logp ab)
A Diameter of circle with same area A Ellipse=0 and increases with roughness
A Orientation angle A Roundness
A Angle of major ellipse axis ARN=&nN" !

A Circle=1 while linek

&

EL =1.404 DP=0.015
EL =2.600 /—L'L/=3818

DP=0.201 DP=10.732

MIKLI, V., KAERDI, H., KULU, P., BESTERCI, M. Characterization of Powder Morphology. Proc. Estonian Acad. 3¢il,P8g34001,
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Experimental Considerations

Metallography of aluminum coldprayed samples

Spray condition

N, 3MPa, 573K
Al AS052 N,, 3MPa, 673K
N,, 3MPa, 773K

Aluminum powder

Volume average: 35m —youms Dians
Number average: 2¥m
Sample preparation: g Ll
A Samples cutinto £0.5 cm ¥
A Mechanically grinded and polished to 0.3 um u
A Chemically etched (see Table) ot e oy
A Microstructures studiedvith Hitachi S4800 : :
field-emission SEM Coat | Etchant Concentratior Time
Distilled water 95 ml
Hydrochloric acid 1.5 ml
A Nitric acid 2.5 ml 30s
Hydrofluoric acid 1ml

A Allsamples supplied by Plasa&iken
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Heterogeneous Bonding in Al Samples

onSi0O2 15. OkV 9.5mm x600 SE(M) 8/26/2012 50.0um

A Key feature: Heterogeneous etching of interfac
A Deposition Temperatur®ependent
A Spacing/Pitch (O) tens of micro

R B / '
onSi02 15.0kV 9.3mm x500 SE(M) 8/26/2012
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5.0kV 8.6mm x3.00k SE(U) Lrert AI(Al) 15.0kV 8.3mm x4.50k SE(U)

Aluminum on A5052 (573K) | Aluminum on A5052 (673K) | Aluminum on A5052 (673K)

1.

2.

==

Interfaces that are removed by etching
solution completely.

Interfaces that removed by etching
solution partially and some holes form a

the interface.
Interfaces that are not removed by etching

solution.
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Why different behavior at interfacet:
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Effect of Hydrostatic pressure on etching rate:

A Incold spray process we are not
dealing with uniaxial stress field Aluminum Etching Rate change
like the experiment done by
SarkarAquino. So it is more
convenient to examine the
effect of hydrostatic pressure on
etching rate.

A In the figure changes of
aluminum reaction rate with
acid are calculated for a range of
pressure fields.

A :L%T;nluomcs;/?nrrglz V;r!léme IS HydrostatilgoPressure (MPa
pressure can have large effect
on its reaction rate.
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* Swarnavdarkar, Wilkins Aquino, Changegliectrodicreaction rates due to elastic stress and strestuced surface patternglectrochimicacta
Volume 111, 30 November 2013, Pages-822,,
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